On topological rank of factors of Cantor minimal systems

A Cantor minimal system is of finite topological rank if it has a Bratteli–Vershik representation whose number of vertices per level is uniformly bounded. We prove that if the topological rank of a minimal dynamical system on a Cantor set is finite, then all its minimal Cantor factors have finite to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2022-09, Vol.42 (9), p.2866-2889
Hauptverfasser: GOLESTANI, NASSER, HOSSEINI, MARYAM
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2889
container_issue 9
container_start_page 2866
container_title Ergodic theory and dynamical systems
container_volume 42
creator GOLESTANI, NASSER
HOSSEINI, MARYAM
description A Cantor minimal system is of finite topological rank if it has a Bratteli–Vershik representation whose number of vertices per level is uniformly bounded. We prove that if the topological rank of a minimal dynamical system on a Cantor set is finite, then all its minimal Cantor factors have finite topological rank as well. This gives an affirmative answer to a question posed by Donoso, Durand, Maass, and Petite in full generality. As a consequence, we obtain the dichotomy of Downarowicz and Maass for Cantor factors of finite-rank Cantor minimal systems: they are either odometers or subshifts.
doi_str_mv 10.1017/etds.2021.62
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2697601411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2021_62</cupid><sourcerecordid>2697601411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-efe4793b8cb2dfaede678dd1f76c53759bebdee3cf92905532bf0819705970973</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMisZLgj9iORxTxJVXqArPl2OcqpYmLnQ799zhqJRaG073Dc-_dvQjdE1wRTOQTTC5VFFNSCXqBFqQWqqxrIi_RApOalazh8hrdpLTFGDMi-QI167GYwj7swqa3ZldEM34XwRfe2CnENMvWjFkWQz_2QybSMU0wpFt05c0uwd25L9HX68tn-16u1m8f7fOqtAzTqQQPtVSsa2xHnTfgQMjGOeKlsJxJrjroHACzXlGFOWe087ghSmKeS0m2RA8n330MPwdIk96GQxzzSk2FkiI_RkimHk-UjSGlCF7vY742HjXBes5Gz9noORstaMarM26GLvZuA3-u_w78Ah3CZnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697601411</pqid></control><display><type>article</type><title>On topological rank of factors of Cantor minimal systems</title><source>Cambridge University Press Journals Complete</source><creator>GOLESTANI, NASSER ; HOSSEINI, MARYAM</creator><creatorcontrib>GOLESTANI, NASSER ; HOSSEINI, MARYAM</creatorcontrib><description>A Cantor minimal system is of finite topological rank if it has a Bratteli–Vershik representation whose number of vertices per level is uniformly bounded. We prove that if the topological rank of a minimal dynamical system on a Cantor set is finite, then all its minimal Cantor factors have finite topological rank as well. This gives an affirmative answer to a question posed by Donoso, Durand, Maass, and Petite in full generality. As a consequence, we obtain the dichotomy of Downarowicz and Maass for Cantor factors of finite-rank Cantor minimal systems: they are either odometers or subshifts.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2021.62</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Apexes ; Dynamical systems ; Mathematics ; Original Article ; Topology</subject><ispartof>Ergodic theory and dynamical systems, 2022-09, Vol.42 (9), p.2866-2889</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-efe4793b8cb2dfaede678dd1f76c53759bebdee3cf92905532bf0819705970973</citedby><cites>FETCH-LOGICAL-c302t-efe4793b8cb2dfaede678dd1f76c53759bebdee3cf92905532bf0819705970973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385721000626/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27911,27912,55615</link.rule.ids></links><search><creatorcontrib>GOLESTANI, NASSER</creatorcontrib><creatorcontrib>HOSSEINI, MARYAM</creatorcontrib><title>On topological rank of factors of Cantor minimal systems</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>A Cantor minimal system is of finite topological rank if it has a Bratteli–Vershik representation whose number of vertices per level is uniformly bounded. We prove that if the topological rank of a minimal dynamical system on a Cantor set is finite, then all its minimal Cantor factors have finite topological rank as well. This gives an affirmative answer to a question posed by Donoso, Durand, Maass, and Petite in full generality. As a consequence, we obtain the dichotomy of Downarowicz and Maass for Cantor factors of finite-rank Cantor minimal systems: they are either odometers or subshifts.</description><subject>Algebra</subject><subject>Apexes</subject><subject>Dynamical systems</subject><subject>Mathematics</subject><subject>Original Article</subject><subject>Topology</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMisZLgj9iORxTxJVXqArPl2OcqpYmLnQ799zhqJRaG073Dc-_dvQjdE1wRTOQTTC5VFFNSCXqBFqQWqqxrIi_RApOalazh8hrdpLTFGDMi-QI167GYwj7swqa3ZldEM34XwRfe2CnENMvWjFkWQz_2QybSMU0wpFt05c0uwd25L9HX68tn-16u1m8f7fOqtAzTqQQPtVSsa2xHnTfgQMjGOeKlsJxJrjroHACzXlGFOWe087ghSmKeS0m2RA8n330MPwdIk96GQxzzSk2FkiI_RkimHk-UjSGlCF7vY742HjXBes5Gz9noORstaMarM26GLvZuA3-u_w78Ah3CZnA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>GOLESTANI, NASSER</creator><creator>HOSSEINI, MARYAM</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220901</creationdate><title>On topological rank of factors of Cantor minimal systems</title><author>GOLESTANI, NASSER ; HOSSEINI, MARYAM</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-efe4793b8cb2dfaede678dd1f76c53759bebdee3cf92905532bf0819705970973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Apexes</topic><topic>Dynamical systems</topic><topic>Mathematics</topic><topic>Original Article</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOLESTANI, NASSER</creatorcontrib><creatorcontrib>HOSSEINI, MARYAM</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOLESTANI, NASSER</au><au>HOSSEINI, MARYAM</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On topological rank of factors of Cantor minimal systems</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>42</volume><issue>9</issue><spage>2866</spage><epage>2889</epage><pages>2866-2889</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>A Cantor minimal system is of finite topological rank if it has a Bratteli–Vershik representation whose number of vertices per level is uniformly bounded. We prove that if the topological rank of a minimal dynamical system on a Cantor set is finite, then all its minimal Cantor factors have finite topological rank as well. This gives an affirmative answer to a question posed by Donoso, Durand, Maass, and Petite in full generality. As a consequence, we obtain the dichotomy of Downarowicz and Maass for Cantor factors of finite-rank Cantor minimal systems: they are either odometers or subshifts.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2021.62</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2022-09, Vol.42 (9), p.2866-2889
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_2697601411
source Cambridge University Press Journals Complete
subjects Algebra
Apexes
Dynamical systems
Mathematics
Original Article
Topology
title On topological rank of factors of Cantor minimal systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20topological%20rank%20of%20factors%20of%20Cantor%20minimal%20systems&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=GOLESTANI,%20NASSER&rft.date=2022-09-01&rft.volume=42&rft.issue=9&rft.spage=2866&rft.epage=2889&rft.pages=2866-2889&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2021.62&rft_dat=%3Cproquest_cross%3E2697601411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697601411&rft_id=info:pmid/&rft_cupid=10_1017_etds_2021_62&rfr_iscdi=true