Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches
Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural langua...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.75637-75656 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75656 |
---|---|
container_issue | |
container_start_page | 75637 |
container_title | IEEE access |
container_volume | 10 |
creator | S, Pooja C. B., Chandrakala Raju, Laiju K. |
description | Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural language processing in the application of interpreting source code as text, AI approaches based on Machine Learning, Deep Learning and Graph Neural Network have impactful research works. The key requirement for developing an AI based vulnerability detector model from a developer perspective is to identify which AI model to adopt, availability of labelled dataset, how to represent essential feature and tokenizing the extracted feature vectors, specification of vulnerability coverage with detection granularity. Most of the literature review work explores AI approaches based on either Machine Learning or Deep Learning model. The existing literature work either highlight only feature representation technique or identifying granularity level and dataset. A qualitative comparative analysis on ML, DL, GNN based model is presented in this work to get a complete picture on VDM thus addressing the challenges of a researcher to choose suitable architecture, feature representation and processing required for designing a VDM. This work focuses on putting together all the essential bits required for designing an automated software vulnerability detection model using any various AI approaches. |
doi_str_mv | 10.1109/ACCESS.2022.3191115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2697576661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9830729</ieee_id><doaj_id>oai_doaj_org_article_40f99243f85f46e48d9ce2adf2999329</doaj_id><sourcerecordid>2697576661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-47f777634327a1a71fb43d1efa761c5848887f39afac3553387e3e2d7418b4593</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX9BLwEPnlo338mxtH4UFMGq15DuTmrKulmTVPHfu3WlOJcZZua9N8MrihEuJxiX-mo6m10vlxNSEjKhWGOM-UFxQrDQY8qpOPxXHxfnKW3KPlTf4vKkWM3hE5rQQbxM6CnY-t12KAc0h-TXLVoGl79sBPS6bVqIduUbn7_7aYYq-9Cih1BDg16Sb9do7p2DCG1G0wWadl0MtnqDdFYcOdskOP_Lp8XLzfXz7G58_3i7mE3vxxUrVR4z6aSUgjJKpMVWYrditMbgrBS44ooppaSj2jpbUc4pVRIokFoyrFaMa3paLAbeOtiN6aJ_t_HbBOvNbyPEtbEx-6oBw0qnNWHUKe6YAKZqXQGxtSNaa0p2XBcDV__ExxZSNpuwjW1_viFCSy6FELjfosNWFUNKEdxeFZdm540ZvDE7b8yfNz1qNKA8AOwRWtFS9so_Gw2JFA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697576661</pqid></control><display><type>article</type><title>Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>S, Pooja ; C. B., Chandrakala ; Raju, Laiju K.</creator><creatorcontrib>S, Pooja ; C. B., Chandrakala ; Raju, Laiju K.</creatorcontrib><description>Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural language processing in the application of interpreting source code as text, AI approaches based on Machine Learning, Deep Learning and Graph Neural Network have impactful research works. The key requirement for developing an AI based vulnerability detector model from a developer perspective is to identify which AI model to adopt, availability of labelled dataset, how to represent essential feature and tokenizing the extracted feature vectors, specification of vulnerability coverage with detection granularity. Most of the literature review work explores AI approaches based on either Machine Learning or Deep Learning model. The existing literature work either highlight only feature representation technique or identifying granularity level and dataset. A qualitative comparative analysis on ML, DL, GNN based model is presented in this work to get a complete picture on VDM thus addressing the challenges of a researcher to choose suitable architecture, feature representation and processing required for designing a VDM. This work focuses on putting together all the essential bits required for designing an automated software vulnerability detection model using any various AI approaches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3191115</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Codes ; Cybersecurity ; Datasets ; Deep learning ; Feature extraction ; feature representation ; granularity ; graph neural network ; Graph neural networks ; Java ; Literature reviews ; Machine learning ; Natural language processing ; Qualitative analysis ; Representations ; Software ; Software reliability ; Source code ; Syntactics ; tokenization ; Vulnerability</subject><ispartof>IEEE access, 2022, Vol.10, p.75637-75656</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-47f777634327a1a71fb43d1efa761c5848887f39afac3553387e3e2d7418b4593</citedby><cites>FETCH-LOGICAL-c408t-47f777634327a1a71fb43d1efa761c5848887f39afac3553387e3e2d7418b4593</cites><orcidid>0000-0003-3818-0679 ; 0000-0002-7688-8320 ; 0000-0002-2635-7695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9830729$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>S, Pooja</creatorcontrib><creatorcontrib>C. B., Chandrakala</creatorcontrib><creatorcontrib>Raju, Laiju K.</creatorcontrib><title>Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches</title><title>IEEE access</title><addtitle>Access</addtitle><description>Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural language processing in the application of interpreting source code as text, AI approaches based on Machine Learning, Deep Learning and Graph Neural Network have impactful research works. The key requirement for developing an AI based vulnerability detector model from a developer perspective is to identify which AI model to adopt, availability of labelled dataset, how to represent essential feature and tokenizing the extracted feature vectors, specification of vulnerability coverage with detection granularity. Most of the literature review work explores AI approaches based on either Machine Learning or Deep Learning model. The existing literature work either highlight only feature representation technique or identifying granularity level and dataset. A qualitative comparative analysis on ML, DL, GNN based model is presented in this work to get a complete picture on VDM thus addressing the challenges of a researcher to choose suitable architecture, feature representation and processing required for designing a VDM. This work focuses on putting together all the essential bits required for designing an automated software vulnerability detection model using any various AI approaches.</description><subject>Artificial intelligence</subject><subject>Codes</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>feature representation</subject><subject>granularity</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>Java</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Qualitative analysis</subject><subject>Representations</subject><subject>Software</subject><subject>Software reliability</subject><subject>Source code</subject><subject>Syntactics</subject><subject>tokenization</subject><subject>Vulnerability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX9BLwEPnlo338mxtH4UFMGq15DuTmrKulmTVPHfu3WlOJcZZua9N8MrihEuJxiX-mo6m10vlxNSEjKhWGOM-UFxQrDQY8qpOPxXHxfnKW3KPlTf4vKkWM3hE5rQQbxM6CnY-t12KAc0h-TXLVoGl79sBPS6bVqIduUbn7_7aYYq-9Cih1BDg16Sb9do7p2DCG1G0wWadl0MtnqDdFYcOdskOP_Lp8XLzfXz7G58_3i7mE3vxxUrVR4z6aSUgjJKpMVWYrditMbgrBS44ooppaSj2jpbUc4pVRIokFoyrFaMa3paLAbeOtiN6aJ_t_HbBOvNbyPEtbEx-6oBw0qnNWHUKe6YAKZqXQGxtSNaa0p2XBcDV__ExxZSNpuwjW1_viFCSy6FELjfosNWFUNKEdxeFZdm540ZvDE7b8yfNz1qNKA8AOwRWtFS9so_Gw2JFA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>S, Pooja</creator><creator>C. B., Chandrakala</creator><creator>Raju, Laiju K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3818-0679</orcidid><orcidid>https://orcid.org/0000-0002-7688-8320</orcidid><orcidid>https://orcid.org/0000-0002-2635-7695</orcidid></search><sort><creationdate>2022</creationdate><title>Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches</title><author>S, Pooja ; C. B., Chandrakala ; Raju, Laiju K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-47f777634327a1a71fb43d1efa761c5848887f39afac3553387e3e2d7418b4593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Codes</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>feature representation</topic><topic>granularity</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>Java</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Qualitative analysis</topic><topic>Representations</topic><topic>Software</topic><topic>Software reliability</topic><topic>Source code</topic><topic>Syntactics</topic><topic>tokenization</topic><topic>Vulnerability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>S, Pooja</creatorcontrib><creatorcontrib>C. B., Chandrakala</creatorcontrib><creatorcontrib>Raju, Laiju K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>S, Pooja</au><au>C. B., Chandrakala</au><au>Raju, Laiju K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>75637</spage><epage>75656</epage><pages>75637-75656</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural language processing in the application of interpreting source code as text, AI approaches based on Machine Learning, Deep Learning and Graph Neural Network have impactful research works. The key requirement for developing an AI based vulnerability detector model from a developer perspective is to identify which AI model to adopt, availability of labelled dataset, how to represent essential feature and tokenizing the extracted feature vectors, specification of vulnerability coverage with detection granularity. Most of the literature review work explores AI approaches based on either Machine Learning or Deep Learning model. The existing literature work either highlight only feature representation technique or identifying granularity level and dataset. A qualitative comparative analysis on ML, DL, GNN based model is presented in this work to get a complete picture on VDM thus addressing the challenges of a researcher to choose suitable architecture, feature representation and processing required for designing a VDM. This work focuses on putting together all the essential bits required for designing an automated software vulnerability detection model using any various AI approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3191115</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3818-0679</orcidid><orcidid>https://orcid.org/0000-0002-7688-8320</orcidid><orcidid>https://orcid.org/0000-0002-2635-7695</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.75637-75656 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2697576661 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial intelligence Codes Cybersecurity Datasets Deep learning Feature extraction feature representation granularity graph neural network Graph neural networks Java Literature reviews Machine learning Natural language processing Qualitative analysis Representations Software Software reliability Source code Syntactics tokenization Vulnerability |
title | Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developer's%20Roadmap%20to%20Design%20Software%20Vulnerability%20Detection%20Model%20Using%20Different%20AI%20Approaches&rft.jtitle=IEEE%20access&rft.au=S,%20Pooja&rft.date=2022&rft.volume=10&rft.spage=75637&rft.epage=75656&rft.pages=75637-75656&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3191115&rft_dat=%3Cproquest_cross%3E2697576661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697576661&rft_id=info:pmid/&rft_ieee_id=9830729&rft_doaj_id=oai_doaj_org_article_40f99243f85f46e48d9ce2adf2999329&rfr_iscdi=true |