Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural langua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.75637-75656
Hauptverfasser: S, Pooja, C. B., Chandrakala, Raju, Laiju K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75656
container_issue
container_start_page 75637
container_title IEEE access
container_volume 10
creator S, Pooja
C. B., Chandrakala
Raju, Laiju K.
description Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural language processing in the application of interpreting source code as text, AI approaches based on Machine Learning, Deep Learning and Graph Neural Network have impactful research works. The key requirement for developing an AI based vulnerability detector model from a developer perspective is to identify which AI model to adopt, availability of labelled dataset, how to represent essential feature and tokenizing the extracted feature vectors, specification of vulnerability coverage with detection granularity. Most of the literature review work explores AI approaches based on either Machine Learning or Deep Learning model. The existing literature work either highlight only feature representation technique or identifying granularity level and dataset. A qualitative comparative analysis on ML, DL, GNN based model is presented in this work to get a complete picture on VDM thus addressing the challenges of a researcher to choose suitable architecture, feature representation and processing required for designing a VDM. This work focuses on putting together all the essential bits required for designing an automated software vulnerability detection model using any various AI approaches.
doi_str_mv 10.1109/ACCESS.2022.3191115
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2697576661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9830729</ieee_id><doaj_id>oai_doaj_org_article_40f99243f85f46e48d9ce2adf2999329</doaj_id><sourcerecordid>2697576661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-47f777634327a1a71fb43d1efa761c5848887f39afac3553387e3e2d7418b4593</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX9BLwEPnlo338mxtH4UFMGq15DuTmrKulmTVPHfu3WlOJcZZua9N8MrihEuJxiX-mo6m10vlxNSEjKhWGOM-UFxQrDQY8qpOPxXHxfnKW3KPlTf4vKkWM3hE5rQQbxM6CnY-t12KAc0h-TXLVoGl79sBPS6bVqIduUbn7_7aYYq-9Cih1BDg16Sb9do7p2DCG1G0wWadl0MtnqDdFYcOdskOP_Lp8XLzfXz7G58_3i7mE3vxxUrVR4z6aSUgjJKpMVWYrditMbgrBS44ooppaSj2jpbUc4pVRIokFoyrFaMa3paLAbeOtiN6aJ_t_HbBOvNbyPEtbEx-6oBw0qnNWHUKe6YAKZqXQGxtSNaa0p2XBcDV__ExxZSNpuwjW1_viFCSy6FELjfosNWFUNKEdxeFZdm540ZvDE7b8yfNz1qNKA8AOwRWtFS9so_Gw2JFA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697576661</pqid></control><display><type>article</type><title>Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>S, Pooja ; C. B., Chandrakala ; Raju, Laiju K.</creator><creatorcontrib>S, Pooja ; C. B., Chandrakala ; Raju, Laiju K.</creatorcontrib><description>Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural language processing in the application of interpreting source code as text, AI approaches based on Machine Learning, Deep Learning and Graph Neural Network have impactful research works. The key requirement for developing an AI based vulnerability detector model from a developer perspective is to identify which AI model to adopt, availability of labelled dataset, how to represent essential feature and tokenizing the extracted feature vectors, specification of vulnerability coverage with detection granularity. Most of the literature review work explores AI approaches based on either Machine Learning or Deep Learning model. The existing literature work either highlight only feature representation technique or identifying granularity level and dataset. A qualitative comparative analysis on ML, DL, GNN based model is presented in this work to get a complete picture on VDM thus addressing the challenges of a researcher to choose suitable architecture, feature representation and processing required for designing a VDM. This work focuses on putting together all the essential bits required for designing an automated software vulnerability detection model using any various AI approaches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3191115</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Codes ; Cybersecurity ; Datasets ; Deep learning ; Feature extraction ; feature representation ; granularity ; graph neural network ; Graph neural networks ; Java ; Literature reviews ; Machine learning ; Natural language processing ; Qualitative analysis ; Representations ; Software ; Software reliability ; Source code ; Syntactics ; tokenization ; Vulnerability</subject><ispartof>IEEE access, 2022, Vol.10, p.75637-75656</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-47f777634327a1a71fb43d1efa761c5848887f39afac3553387e3e2d7418b4593</citedby><cites>FETCH-LOGICAL-c408t-47f777634327a1a71fb43d1efa761c5848887f39afac3553387e3e2d7418b4593</cites><orcidid>0000-0003-3818-0679 ; 0000-0002-7688-8320 ; 0000-0002-2635-7695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9830729$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>S, Pooja</creatorcontrib><creatorcontrib>C. B., Chandrakala</creatorcontrib><creatorcontrib>Raju, Laiju K.</creatorcontrib><title>Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches</title><title>IEEE access</title><addtitle>Access</addtitle><description>Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural language processing in the application of interpreting source code as text, AI approaches based on Machine Learning, Deep Learning and Graph Neural Network have impactful research works. The key requirement for developing an AI based vulnerability detector model from a developer perspective is to identify which AI model to adopt, availability of labelled dataset, how to represent essential feature and tokenizing the extracted feature vectors, specification of vulnerability coverage with detection granularity. Most of the literature review work explores AI approaches based on either Machine Learning or Deep Learning model. The existing literature work either highlight only feature representation technique or identifying granularity level and dataset. A qualitative comparative analysis on ML, DL, GNN based model is presented in this work to get a complete picture on VDM thus addressing the challenges of a researcher to choose suitable architecture, feature representation and processing required for designing a VDM. This work focuses on putting together all the essential bits required for designing an automated software vulnerability detection model using any various AI approaches.</description><subject>Artificial intelligence</subject><subject>Codes</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>feature representation</subject><subject>granularity</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>Java</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Qualitative analysis</subject><subject>Representations</subject><subject>Software</subject><subject>Software reliability</subject><subject>Source code</subject><subject>Syntactics</subject><subject>tokenization</subject><subject>Vulnerability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX9BLwEPnlo338mxtH4UFMGq15DuTmrKulmTVPHfu3WlOJcZZua9N8MrihEuJxiX-mo6m10vlxNSEjKhWGOM-UFxQrDQY8qpOPxXHxfnKW3KPlTf4vKkWM3hE5rQQbxM6CnY-t12KAc0h-TXLVoGl79sBPS6bVqIduUbn7_7aYYq-9Cih1BDg16Sb9do7p2DCG1G0wWadl0MtnqDdFYcOdskOP_Lp8XLzfXz7G58_3i7mE3vxxUrVR4z6aSUgjJKpMVWYrditMbgrBS44ooppaSj2jpbUc4pVRIokFoyrFaMa3paLAbeOtiN6aJ_t_HbBOvNbyPEtbEx-6oBw0qnNWHUKe6YAKZqXQGxtSNaa0p2XBcDV__ExxZSNpuwjW1_viFCSy6FELjfosNWFUNKEdxeFZdm540ZvDE7b8yfNz1qNKA8AOwRWtFS9so_Gw2JFA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>S, Pooja</creator><creator>C. B., Chandrakala</creator><creator>Raju, Laiju K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3818-0679</orcidid><orcidid>https://orcid.org/0000-0002-7688-8320</orcidid><orcidid>https://orcid.org/0000-0002-2635-7695</orcidid></search><sort><creationdate>2022</creationdate><title>Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches</title><author>S, Pooja ; C. B., Chandrakala ; Raju, Laiju K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-47f777634327a1a71fb43d1efa761c5848887f39afac3553387e3e2d7418b4593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Codes</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>feature representation</topic><topic>granularity</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>Java</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Qualitative analysis</topic><topic>Representations</topic><topic>Software</topic><topic>Software reliability</topic><topic>Source code</topic><topic>Syntactics</topic><topic>tokenization</topic><topic>Vulnerability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>S, Pooja</creatorcontrib><creatorcontrib>C. B., Chandrakala</creatorcontrib><creatorcontrib>Raju, Laiju K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>S, Pooja</au><au>C. B., Chandrakala</au><au>Raju, Laiju K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>75637</spage><epage>75656</epage><pages>75637-75656</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Automatic software vulnerability detection has caught the eyes of researchers as because software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vulnerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural language processing in the application of interpreting source code as text, AI approaches based on Machine Learning, Deep Learning and Graph Neural Network have impactful research works. The key requirement for developing an AI based vulnerability detector model from a developer perspective is to identify which AI model to adopt, availability of labelled dataset, how to represent essential feature and tokenizing the extracted feature vectors, specification of vulnerability coverage with detection granularity. Most of the literature review work explores AI approaches based on either Machine Learning or Deep Learning model. The existing literature work either highlight only feature representation technique or identifying granularity level and dataset. A qualitative comparative analysis on ML, DL, GNN based model is presented in this work to get a complete picture on VDM thus addressing the challenges of a researcher to choose suitable architecture, feature representation and processing required for designing a VDM. This work focuses on putting together all the essential bits required for designing an automated software vulnerability detection model using any various AI approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3191115</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3818-0679</orcidid><orcidid>https://orcid.org/0000-0002-7688-8320</orcidid><orcidid>https://orcid.org/0000-0002-2635-7695</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.75637-75656
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2697576661
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial intelligence
Codes
Cybersecurity
Datasets
Deep learning
Feature extraction
feature representation
granularity
graph neural network
Graph neural networks
Java
Literature reviews
Machine learning
Natural language processing
Qualitative analysis
Representations
Software
Software reliability
Source code
Syntactics
tokenization
Vulnerability
title Developer's Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developer's%20Roadmap%20to%20Design%20Software%20Vulnerability%20Detection%20Model%20Using%20Different%20AI%20Approaches&rft.jtitle=IEEE%20access&rft.au=S,%20Pooja&rft.date=2022&rft.volume=10&rft.spage=75637&rft.epage=75656&rft.pages=75637-75656&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3191115&rft_dat=%3Cproquest_cross%3E2697576661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697576661&rft_id=info:pmid/&rft_ieee_id=9830729&rft_doaj_id=oai_doaj_org_article_40f99243f85f46e48d9ce2adf2999329&rfr_iscdi=true