Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks

Path loss exponent and shadowing factor are among important wireless channel parameters. These parameters can be estimated using field measurements or ray-tracing simulations, which are costly and time-consuming. In this letter, we take a deep neural network-based approach, which takes either satell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2022-08, Vol.21 (8), p.1562-1566
Hauptverfasser: Bal, Mustafa, Marey, Ahmed, Ates, Hasan F., Baykas, Tuncer, Gunturk, Bahadir K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1566
container_issue 8
container_start_page 1562
container_title IEEE antennas and wireless propagation letters
container_volume 21
creator Bal, Mustafa
Marey, Ahmed
Ates, Hasan F.
Baykas, Tuncer
Gunturk, Bahadir K.
description Path loss exponent and shadowing factor are among important wireless channel parameters. These parameters can be estimated using field measurements or ray-tracing simulations, which are costly and time-consuming. In this letter, we take a deep neural network-based approach, which takes either satellite image or height map of a target region as input, and estimates the desired channel parameters. We use the well-known VGG-16 architecture, pretrained on the ImageNet dataset, as the backbone to extract image features, modify it as a regression network to produce channel parameters, and retrain it on our dataset, which consists of satellite image or height map as input and channel parameters as target values. We demonstrate that deep networks can be successfully utilized in estimating path loss exponent and shadowing factor of a region, simply from the region's satellite image or height map. The trained models and test codes are publicly available on a Github page.
doi_str_mv 10.1109/LAWP.2022.3174357
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2697570048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772961</ieee_id><sourcerecordid>2697570048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-db3fec127c02dec4593582d48e5c59a1677f56bc23603463ea70ea0e4253149c3</originalsourceid><addsrcrecordid>eNo9kE9PAjEUxBujiYh-AOOliefF9vXf7pGgKMlGiUo8NqW8xUVgsV1i_PZ2A_E0c5h5L_Mj5JqzAeesuCuHH9MBMICB4EYKZU5IjyuZZ8ooc9p5oTMOoM7JRYwrxrjRSvTI5BWXAWOsmy1tKlq6sMTszbs10qlrP2nZxJhccBtsMUQ6i_V2Se8Rd_QZ98Gtk7Q_TfiKl-SscuuIV0ftk9n44X30lJUvj5PRsMw8gGizxVxU6DkYz2CBXqpCqBwWMkflVeG4NqZSeu5BaCakFugMQ8dQghJcFl70ye3h7i4033uMrV01-7BNLy3oIq1lTOYpxQ8pH9KCgJXdhXrjwq_lzHbEbEfMdsTskVjq3Bw6NSL-5wtjoNBc_AHm1GXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697570048</pqid></control><display><type>article</type><title>Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Bal, Mustafa ; Marey, Ahmed ; Ates, Hasan F. ; Baykas, Tuncer ; Gunturk, Bahadir K.</creator><creatorcontrib>Bal, Mustafa ; Marey, Ahmed ; Ates, Hasan F. ; Baykas, Tuncer ; Gunturk, Bahadir K.</creatorcontrib><description>Path loss exponent and shadowing factor are among important wireless channel parameters. These parameters can be estimated using field measurements or ray-tracing simulations, which are costly and time-consuming. In this letter, we take a deep neural network-based approach, which takes either satellite image or height map of a target region as input, and estimates the desired channel parameters. We use the well-known VGG-16 architecture, pretrained on the ImageNet dataset, as the backbone to extract image features, modify it as a regression network to produce channel parameters, and retrain it on our dataset, which consists of satellite image or height map as input and channel parameters as target values. We demonstrate that deep networks can be successfully utilized in estimating path loss exponent and shadowing factor of a region, simply from the region's satellite image or height map. The trained models and test codes are publicly available on a Github page.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2022.3174357</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Datasets ; Deep learning ; Feature extraction ; height map ; Parameter modification ; Ray tracing ; Receivers ; regression ; Satellite imagery ; Satellites ; Shadow mapping ; Solid modeling ; Training ; wireless channel parameter estimation ; Wireless communication</subject><ispartof>IEEE antennas and wireless propagation letters, 2022-08, Vol.21 (8), p.1562-1566</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-db3fec127c02dec4593582d48e5c59a1677f56bc23603463ea70ea0e4253149c3</citedby><cites>FETCH-LOGICAL-c223t-db3fec127c02dec4593582d48e5c59a1677f56bc23603463ea70ea0e4253149c3</cites><orcidid>0000-0002-6842-1528 ; 0000-0002-0151-0067 ; 0000-0003-0779-9620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772961$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9772961$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bal, Mustafa</creatorcontrib><creatorcontrib>Marey, Ahmed</creatorcontrib><creatorcontrib>Ates, Hasan F.</creatorcontrib><creatorcontrib>Baykas, Tuncer</creatorcontrib><creatorcontrib>Gunturk, Bahadir K.</creatorcontrib><title>Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>Path loss exponent and shadowing factor are among important wireless channel parameters. These parameters can be estimated using field measurements or ray-tracing simulations, which are costly and time-consuming. In this letter, we take a deep neural network-based approach, which takes either satellite image or height map of a target region as input, and estimates the desired channel parameters. We use the well-known VGG-16 architecture, pretrained on the ImageNet dataset, as the backbone to extract image features, modify it as a regression network to produce channel parameters, and retrain it on our dataset, which consists of satellite image or height map as input and channel parameters as target values. We demonstrate that deep networks can be successfully utilized in estimating path loss exponent and shadowing factor of a region, simply from the region's satellite image or height map. The trained models and test codes are publicly available on a Github page.</description><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>height map</subject><subject>Parameter modification</subject><subject>Ray tracing</subject><subject>Receivers</subject><subject>regression</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Shadow mapping</subject><subject>Solid modeling</subject><subject>Training</subject><subject>wireless channel parameter estimation</subject><subject>Wireless communication</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEUxBujiYh-AOOliefF9vXf7pGgKMlGiUo8NqW8xUVgsV1i_PZ2A_E0c5h5L_Mj5JqzAeesuCuHH9MBMICB4EYKZU5IjyuZZ8ooc9p5oTMOoM7JRYwrxrjRSvTI5BWXAWOsmy1tKlq6sMTszbs10qlrP2nZxJhccBtsMUQ6i_V2Se8Rd_QZ98Gtk7Q_TfiKl-SscuuIV0ftk9n44X30lJUvj5PRsMw8gGizxVxU6DkYz2CBXqpCqBwWMkflVeG4NqZSeu5BaCakFugMQ8dQghJcFl70ye3h7i4033uMrV01-7BNLy3oIq1lTOYpxQ8pH9KCgJXdhXrjwq_lzHbEbEfMdsTskVjq3Bw6NSL-5wtjoNBc_AHm1GXU</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bal, Mustafa</creator><creator>Marey, Ahmed</creator><creator>Ates, Hasan F.</creator><creator>Baykas, Tuncer</creator><creator>Gunturk, Bahadir K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6842-1528</orcidid><orcidid>https://orcid.org/0000-0002-0151-0067</orcidid><orcidid>https://orcid.org/0000-0003-0779-9620</orcidid></search><sort><creationdate>20220801</creationdate><title>Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks</title><author>Bal, Mustafa ; Marey, Ahmed ; Ates, Hasan F. ; Baykas, Tuncer ; Gunturk, Bahadir K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-db3fec127c02dec4593582d48e5c59a1677f56bc23603463ea70ea0e4253149c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>height map</topic><topic>Parameter modification</topic><topic>Ray tracing</topic><topic>Receivers</topic><topic>regression</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Shadow mapping</topic><topic>Solid modeling</topic><topic>Training</topic><topic>wireless channel parameter estimation</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Bal, Mustafa</creatorcontrib><creatorcontrib>Marey, Ahmed</creatorcontrib><creatorcontrib>Ates, Hasan F.</creatorcontrib><creatorcontrib>Baykas, Tuncer</creatorcontrib><creatorcontrib>Gunturk, Bahadir K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bal, Mustafa</au><au>Marey, Ahmed</au><au>Ates, Hasan F.</au><au>Baykas, Tuncer</au><au>Gunturk, Bahadir K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>21</volume><issue>8</issue><spage>1562</spage><epage>1566</epage><pages>1562-1566</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>Path loss exponent and shadowing factor are among important wireless channel parameters. These parameters can be estimated using field measurements or ray-tracing simulations, which are costly and time-consuming. In this letter, we take a deep neural network-based approach, which takes either satellite image or height map of a target region as input, and estimates the desired channel parameters. We use the well-known VGG-16 architecture, pretrained on the ImageNet dataset, as the backbone to extract image features, modify it as a regression network to produce channel parameters, and retrain it on our dataset, which consists of satellite image or height map as input and channel parameters as target values. We demonstrate that deep networks can be successfully utilized in estimating path loss exponent and shadowing factor of a region, simply from the region's satellite image or height map. The trained models and test codes are publicly available on a Github page.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2022.3174357</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6842-1528</orcidid><orcidid>https://orcid.org/0000-0002-0151-0067</orcidid><orcidid>https://orcid.org/0000-0003-0779-9620</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2022-08, Vol.21 (8), p.1562-1566
issn 1536-1225
1548-5757
language eng
recordid cdi_proquest_journals_2697570048
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Datasets
Deep learning
Feature extraction
height map
Parameter modification
Ray tracing
Receivers
regression
Satellite imagery
Satellites
Shadow mapping
Solid modeling
Training
wireless channel parameter estimation
Wireless communication
title Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regression%20of%20Large-Scale%20Path%20Loss%20Parameters%20Using%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Bal,%20Mustafa&rft.date=2022-08-01&rft.volume=21&rft.issue=8&rft.spage=1562&rft.epage=1566&rft.pages=1562-1566&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2022.3174357&rft_dat=%3Cproquest_RIE%3E2697570048%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697570048&rft_id=info:pmid/&rft_ieee_id=9772961&rfr_iscdi=true