Localizing GNSS Spoofing Attacks Using Direct Position Determination
Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without r...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-08, Vol.22 (15), p.15323-15333 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15333 |
---|---|
container_issue | 15 |
container_start_page | 15323 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Xie, Jian Liu, Qing Wang, Ling Gong, Yanyun Zhang, Zhaolin |
description | Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without recognizing it. This paper presents a direct position determination method to improve the localization accuracy of GNSS spoofing attacks, which is called despreading direct position determination (DS-DPD). The localization algorithm utilizes a prior knowledge of the satellites' code sequences, which in turn provides significant gains in localization accuracy. Firstly, the received signal model is established, which takes the time delay, Doppler shift, direction-of-arrival (DOA), and modulation codes into account. Then, the maximum likelihood (ML) criterion is utilized to construct the objective function of DS-DPD. Finally, the location parameters of the spoofers can be obtained through a two-dimensional spectral search of the objective function. Numerical simulations verify the localization performance improvement of the proposed DS-DPD algorithm. Especially when the interference-to-noise ratio (INR) approaches −30dB, the localization accuracy could be improved by more than ten times due to its full utilization of the delay, Doppler shift, DOA, and code sequences information. |
doi_str_mv | 10.1109/JSEN.2022.3179557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2697563303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9789982</ieee_id><sourcerecordid>2697563303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b4b3dd77fd131bfbc20a90a0a8247a07a3c4786c879481db0dd1970cb4ff41f03</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ5685gmWZa2VqVUYSy4C5lMIqntpCbThf56Z2hxde-Bc-7jQ-gWwwhjkA8v5Xw1IkDIiGIui4KfoQEuCpFjzsR531PIGeUfl-gqpQ0AlrzgAzRbBqO3_tc3n9liVZZZuQ_B9WrSttp8pWydejXz0Zo2ewvJtz402cy2Nu58o3t1jS6c3iZ7c6pDtH6cv0-f8uXr4nk6WeaGSNrmFatoXXPuakxx5SpDQEvQoAVhXAPX1DAuxkZwyQSuK6jr7kowFXOOYQd0iO6Pc_cxfB9satUmHGLTrVRk3P0zphRo58JHl4khpWid2ke_0_FHYVA9LNXDUj0sdYLVZe6OGW-t_fdLLqQUhP4BjOVlXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697563303</pqid></control><display><type>article</type><title>Localizing GNSS Spoofing Attacks Using Direct Position Determination</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, Jian ; Liu, Qing ; Wang, Ling ; Gong, Yanyun ; Zhang, Zhaolin</creator><creatorcontrib>Xie, Jian ; Liu, Qing ; Wang, Ling ; Gong, Yanyun ; Zhang, Zhaolin</creatorcontrib><description>Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without recognizing it. This paper presents a direct position determination method to improve the localization accuracy of GNSS spoofing attacks, which is called despreading direct position determination (DS-DPD). The localization algorithm utilizes a prior knowledge of the satellites' code sequences, which in turn provides significant gains in localization accuracy. Firstly, the received signal model is established, which takes the time delay, Doppler shift, direction-of-arrival (DOA), and modulation codes into account. Then, the maximum likelihood (ML) criterion is utilized to construct the objective function of DS-DPD. Finally, the location parameters of the spoofers can be obtained through a two-dimensional spectral search of the objective function. Numerical simulations verify the localization performance improvement of the proposed DS-DPD algorithm. Especially when the interference-to-noise ratio (INR) approaches −30dB, the localization accuracy could be improved by more than ten times due to its full utilization of the delay, Doppler shift, DOA, and code sequences information.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3179557</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Antenna arrays ; Codes ; Denial of service attacks ; despreading ; Direction of arrival ; Direction-of-arrival estimation ; Doppler effect ; Doppler shift ; DS-DPD ; Geology ; Global navigation satellite system ; GNSS spoofing ; Localization ; Mathematical models ; maximum likelihood ; Passive location ; Receivers ; Satellites ; Spoofing ; spreading code ; Time lag</subject><ispartof>IEEE sensors journal, 2022-08, Vol.22 (15), p.15323-15333</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b4b3dd77fd131bfbc20a90a0a8247a07a3c4786c879481db0dd1970cb4ff41f03</citedby><cites>FETCH-LOGICAL-c293t-b4b3dd77fd131bfbc20a90a0a8247a07a3c4786c879481db0dd1970cb4ff41f03</cites><orcidid>0000-0002-5728-6893 ; 0000-0001-9654-064X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9789982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9789982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Gong, Yanyun</creatorcontrib><creatorcontrib>Zhang, Zhaolin</creatorcontrib><title>Localizing GNSS Spoofing Attacks Using Direct Position Determination</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without recognizing it. This paper presents a direct position determination method to improve the localization accuracy of GNSS spoofing attacks, which is called despreading direct position determination (DS-DPD). The localization algorithm utilizes a prior knowledge of the satellites' code sequences, which in turn provides significant gains in localization accuracy. Firstly, the received signal model is established, which takes the time delay, Doppler shift, direction-of-arrival (DOA), and modulation codes into account. Then, the maximum likelihood (ML) criterion is utilized to construct the objective function of DS-DPD. Finally, the location parameters of the spoofers can be obtained through a two-dimensional spectral search of the objective function. Numerical simulations verify the localization performance improvement of the proposed DS-DPD algorithm. Especially when the interference-to-noise ratio (INR) approaches −30dB, the localization accuracy could be improved by more than ten times due to its full utilization of the delay, Doppler shift, DOA, and code sequences information.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Codes</subject><subject>Denial of service attacks</subject><subject>despreading</subject><subject>Direction of arrival</subject><subject>Direction-of-arrival estimation</subject><subject>Doppler effect</subject><subject>Doppler shift</subject><subject>DS-DPD</subject><subject>Geology</subject><subject>Global navigation satellite system</subject><subject>GNSS spoofing</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>maximum likelihood</subject><subject>Passive location</subject><subject>Receivers</subject><subject>Satellites</subject><subject>Spoofing</subject><subject>spreading code</subject><subject>Time lag</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ5685gmWZa2VqVUYSy4C5lMIqntpCbThf56Z2hxde-Bc-7jQ-gWwwhjkA8v5Xw1IkDIiGIui4KfoQEuCpFjzsR531PIGeUfl-gqpQ0AlrzgAzRbBqO3_tc3n9liVZZZuQ_B9WrSttp8pWydejXz0Zo2ewvJtz402cy2Nu58o3t1jS6c3iZ7c6pDtH6cv0-f8uXr4nk6WeaGSNrmFatoXXPuakxx5SpDQEvQoAVhXAPX1DAuxkZwyQSuK6jr7kowFXOOYQd0iO6Pc_cxfB9satUmHGLTrVRk3P0zphRo58JHl4khpWid2ke_0_FHYVA9LNXDUj0sdYLVZe6OGW-t_fdLLqQUhP4BjOVlXQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xie, Jian</creator><creator>Liu, Qing</creator><creator>Wang, Ling</creator><creator>Gong, Yanyun</creator><creator>Zhang, Zhaolin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5728-6893</orcidid><orcidid>https://orcid.org/0000-0001-9654-064X</orcidid></search><sort><creationdate>20220801</creationdate><title>Localizing GNSS Spoofing Attacks Using Direct Position Determination</title><author>Xie, Jian ; Liu, Qing ; Wang, Ling ; Gong, Yanyun ; Zhang, Zhaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b4b3dd77fd131bfbc20a90a0a8247a07a3c4786c879481db0dd1970cb4ff41f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Codes</topic><topic>Denial of service attacks</topic><topic>despreading</topic><topic>Direction of arrival</topic><topic>Direction-of-arrival estimation</topic><topic>Doppler effect</topic><topic>Doppler shift</topic><topic>DS-DPD</topic><topic>Geology</topic><topic>Global navigation satellite system</topic><topic>GNSS spoofing</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>maximum likelihood</topic><topic>Passive location</topic><topic>Receivers</topic><topic>Satellites</topic><topic>Spoofing</topic><topic>spreading code</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Gong, Yanyun</creatorcontrib><creatorcontrib>Zhang, Zhaolin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Jian</au><au>Liu, Qing</au><au>Wang, Ling</au><au>Gong, Yanyun</au><au>Zhang, Zhaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localizing GNSS Spoofing Attacks Using Direct Position Determination</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>22</volume><issue>15</issue><spage>15323</spage><epage>15333</epage><pages>15323-15333</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without recognizing it. This paper presents a direct position determination method to improve the localization accuracy of GNSS spoofing attacks, which is called despreading direct position determination (DS-DPD). The localization algorithm utilizes a prior knowledge of the satellites' code sequences, which in turn provides significant gains in localization accuracy. Firstly, the received signal model is established, which takes the time delay, Doppler shift, direction-of-arrival (DOA), and modulation codes into account. Then, the maximum likelihood (ML) criterion is utilized to construct the objective function of DS-DPD. Finally, the location parameters of the spoofers can be obtained through a two-dimensional spectral search of the objective function. Numerical simulations verify the localization performance improvement of the proposed DS-DPD algorithm. Especially when the interference-to-noise ratio (INR) approaches −30dB, the localization accuracy could be improved by more than ten times due to its full utilization of the delay, Doppler shift, DOA, and code sequences information.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3179557</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5728-6893</orcidid><orcidid>https://orcid.org/0000-0001-9654-064X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-08, Vol.22 (15), p.15323-15333 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2697563303 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Antenna arrays Codes Denial of service attacks despreading Direction of arrival Direction-of-arrival estimation Doppler effect Doppler shift DS-DPD Geology Global navigation satellite system GNSS spoofing Localization Mathematical models maximum likelihood Passive location Receivers Satellites Spoofing spreading code Time lag |
title | Localizing GNSS Spoofing Attacks Using Direct Position Determination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localizing%20GNSS%20Spoofing%20Attacks%20Using%20Direct%20Position%20Determination&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xie,%20Jian&rft.date=2022-08-01&rft.volume=22&rft.issue=15&rft.spage=15323&rft.epage=15333&rft.pages=15323-15333&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3179557&rft_dat=%3Cproquest_RIE%3E2697563303%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697563303&rft_id=info:pmid/&rft_ieee_id=9789982&rfr_iscdi=true |