Localizing GNSS Spoofing Attacks Using Direct Position Determination

Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-08, Vol.22 (15), p.15323-15333
Hauptverfasser: Xie, Jian, Liu, Qing, Wang, Ling, Gong, Yanyun, Zhang, Zhaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15333
container_issue 15
container_start_page 15323
container_title IEEE sensors journal
container_volume 22
creator Xie, Jian
Liu, Qing
Wang, Ling
Gong, Yanyun
Zhang, Zhaolin
description Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without recognizing it. This paper presents a direct position determination method to improve the localization accuracy of GNSS spoofing attacks, which is called despreading direct position determination (DS-DPD). The localization algorithm utilizes a prior knowledge of the satellites' code sequences, which in turn provides significant gains in localization accuracy. Firstly, the received signal model is established, which takes the time delay, Doppler shift, direction-of-arrival (DOA), and modulation codes into account. Then, the maximum likelihood (ML) criterion is utilized to construct the objective function of DS-DPD. Finally, the location parameters of the spoofers can be obtained through a two-dimensional spectral search of the objective function. Numerical simulations verify the localization performance improvement of the proposed DS-DPD algorithm. Especially when the interference-to-noise ratio (INR) approaches −30dB, the localization accuracy could be improved by more than ten times due to its full utilization of the delay, Doppler shift, DOA, and code sequences information.
doi_str_mv 10.1109/JSEN.2022.3179557
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2697563303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9789982</ieee_id><sourcerecordid>2697563303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b4b3dd77fd131bfbc20a90a0a8247a07a3c4786c879481db0dd1970cb4ff41f03</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ5685gmWZa2VqVUYSy4C5lMIqntpCbThf56Z2hxde-Bc-7jQ-gWwwhjkA8v5Xw1IkDIiGIui4KfoQEuCpFjzsR531PIGeUfl-gqpQ0AlrzgAzRbBqO3_tc3n9liVZZZuQ_B9WrSttp8pWydejXz0Zo2ewvJtz402cy2Nu58o3t1jS6c3iZ7c6pDtH6cv0-f8uXr4nk6WeaGSNrmFatoXXPuakxx5SpDQEvQoAVhXAPX1DAuxkZwyQSuK6jr7kowFXOOYQd0iO6Pc_cxfB9satUmHGLTrVRk3P0zphRo58JHl4khpWid2ke_0_FHYVA9LNXDUj0sdYLVZe6OGW-t_fdLLqQUhP4BjOVlXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697563303</pqid></control><display><type>article</type><title>Localizing GNSS Spoofing Attacks Using Direct Position Determination</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, Jian ; Liu, Qing ; Wang, Ling ; Gong, Yanyun ; Zhang, Zhaolin</creator><creatorcontrib>Xie, Jian ; Liu, Qing ; Wang, Ling ; Gong, Yanyun ; Zhang, Zhaolin</creatorcontrib><description>Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without recognizing it. This paper presents a direct position determination method to improve the localization accuracy of GNSS spoofing attacks, which is called despreading direct position determination (DS-DPD). The localization algorithm utilizes a prior knowledge of the satellites' code sequences, which in turn provides significant gains in localization accuracy. Firstly, the received signal model is established, which takes the time delay, Doppler shift, direction-of-arrival (DOA), and modulation codes into account. Then, the maximum likelihood (ML) criterion is utilized to construct the objective function of DS-DPD. Finally, the location parameters of the spoofers can be obtained through a two-dimensional spectral search of the objective function. Numerical simulations verify the localization performance improvement of the proposed DS-DPD algorithm. Especially when the interference-to-noise ratio (INR) approaches −30dB, the localization accuracy could be improved by more than ten times due to its full utilization of the delay, Doppler shift, DOA, and code sequences information.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3179557</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Antenna arrays ; Codes ; Denial of service attacks ; despreading ; Direction of arrival ; Direction-of-arrival estimation ; Doppler effect ; Doppler shift ; DS-DPD ; Geology ; Global navigation satellite system ; GNSS spoofing ; Localization ; Mathematical models ; maximum likelihood ; Passive location ; Receivers ; Satellites ; Spoofing ; spreading code ; Time lag</subject><ispartof>IEEE sensors journal, 2022-08, Vol.22 (15), p.15323-15333</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b4b3dd77fd131bfbc20a90a0a8247a07a3c4786c879481db0dd1970cb4ff41f03</citedby><cites>FETCH-LOGICAL-c293t-b4b3dd77fd131bfbc20a90a0a8247a07a3c4786c879481db0dd1970cb4ff41f03</cites><orcidid>0000-0002-5728-6893 ; 0000-0001-9654-064X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9789982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9789982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Gong, Yanyun</creatorcontrib><creatorcontrib>Zhang, Zhaolin</creatorcontrib><title>Localizing GNSS Spoofing Attacks Using Direct Position Determination</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without recognizing it. This paper presents a direct position determination method to improve the localization accuracy of GNSS spoofing attacks, which is called despreading direct position determination (DS-DPD). The localization algorithm utilizes a prior knowledge of the satellites' code sequences, which in turn provides significant gains in localization accuracy. Firstly, the received signal model is established, which takes the time delay, Doppler shift, direction-of-arrival (DOA), and modulation codes into account. Then, the maximum likelihood (ML) criterion is utilized to construct the objective function of DS-DPD. Finally, the location parameters of the spoofers can be obtained through a two-dimensional spectral search of the objective function. Numerical simulations verify the localization performance improvement of the proposed DS-DPD algorithm. Especially when the interference-to-noise ratio (INR) approaches −30dB, the localization accuracy could be improved by more than ten times due to its full utilization of the delay, Doppler shift, DOA, and code sequences information.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Codes</subject><subject>Denial of service attacks</subject><subject>despreading</subject><subject>Direction of arrival</subject><subject>Direction-of-arrival estimation</subject><subject>Doppler effect</subject><subject>Doppler shift</subject><subject>DS-DPD</subject><subject>Geology</subject><subject>Global navigation satellite system</subject><subject>GNSS spoofing</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>maximum likelihood</subject><subject>Passive location</subject><subject>Receivers</subject><subject>Satellites</subject><subject>Spoofing</subject><subject>spreading code</subject><subject>Time lag</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ5685gmWZa2VqVUYSy4C5lMIqntpCbThf56Z2hxde-Bc-7jQ-gWwwhjkA8v5Xw1IkDIiGIui4KfoQEuCpFjzsR531PIGeUfl-gqpQ0AlrzgAzRbBqO3_tc3n9liVZZZuQ_B9WrSttp8pWydejXz0Zo2ewvJtz402cy2Nu58o3t1jS6c3iZ7c6pDtH6cv0-f8uXr4nk6WeaGSNrmFatoXXPuakxx5SpDQEvQoAVhXAPX1DAuxkZwyQSuK6jr7kowFXOOYQd0iO6Pc_cxfB9satUmHGLTrVRk3P0zphRo58JHl4khpWid2ke_0_FHYVA9LNXDUj0sdYLVZe6OGW-t_fdLLqQUhP4BjOVlXQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xie, Jian</creator><creator>Liu, Qing</creator><creator>Wang, Ling</creator><creator>Gong, Yanyun</creator><creator>Zhang, Zhaolin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5728-6893</orcidid><orcidid>https://orcid.org/0000-0001-9654-064X</orcidid></search><sort><creationdate>20220801</creationdate><title>Localizing GNSS Spoofing Attacks Using Direct Position Determination</title><author>Xie, Jian ; Liu, Qing ; Wang, Ling ; Gong, Yanyun ; Zhang, Zhaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b4b3dd77fd131bfbc20a90a0a8247a07a3c4786c879481db0dd1970cb4ff41f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Codes</topic><topic>Denial of service attacks</topic><topic>despreading</topic><topic>Direction of arrival</topic><topic>Direction-of-arrival estimation</topic><topic>Doppler effect</topic><topic>Doppler shift</topic><topic>DS-DPD</topic><topic>Geology</topic><topic>Global navigation satellite system</topic><topic>GNSS spoofing</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>maximum likelihood</topic><topic>Passive location</topic><topic>Receivers</topic><topic>Satellites</topic><topic>Spoofing</topic><topic>spreading code</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Gong, Yanyun</creatorcontrib><creatorcontrib>Zhang, Zhaolin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Jian</au><au>Liu, Qing</au><au>Wang, Ling</au><au>Gong, Yanyun</au><au>Zhang, Zhaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localizing GNSS Spoofing Attacks Using Direct Position Determination</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>22</volume><issue>15</issue><spage>15323</spage><epage>15333</epage><pages>15323-15333</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Global Navigation Satellite System (GNSS) receivers are vulnerable to all types of interferences due to the inherently low power of GNSS signals. Whereas GNSS jammers aim at denial-of-service attacks, GNSS spoofers bring even more risks, since they can fabricate a fake position and/or time without recognizing it. This paper presents a direct position determination method to improve the localization accuracy of GNSS spoofing attacks, which is called despreading direct position determination (DS-DPD). The localization algorithm utilizes a prior knowledge of the satellites' code sequences, which in turn provides significant gains in localization accuracy. Firstly, the received signal model is established, which takes the time delay, Doppler shift, direction-of-arrival (DOA), and modulation codes into account. Then, the maximum likelihood (ML) criterion is utilized to construct the objective function of DS-DPD. Finally, the location parameters of the spoofers can be obtained through a two-dimensional spectral search of the objective function. Numerical simulations verify the localization performance improvement of the proposed DS-DPD algorithm. Especially when the interference-to-noise ratio (INR) approaches −30dB, the localization accuracy could be improved by more than ten times due to its full utilization of the delay, Doppler shift, DOA, and code sequences information.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3179557</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5728-6893</orcidid><orcidid>https://orcid.org/0000-0001-9654-064X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-08, Vol.22 (15), p.15323-15333
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2697563303
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Antenna arrays
Codes
Denial of service attacks
despreading
Direction of arrival
Direction-of-arrival estimation
Doppler effect
Doppler shift
DS-DPD
Geology
Global navigation satellite system
GNSS spoofing
Localization
Mathematical models
maximum likelihood
Passive location
Receivers
Satellites
Spoofing
spreading code
Time lag
title Localizing GNSS Spoofing Attacks Using Direct Position Determination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localizing%20GNSS%20Spoofing%20Attacks%20Using%20Direct%20Position%20Determination&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xie,%20Jian&rft.date=2022-08-01&rft.volume=22&rft.issue=15&rft.spage=15323&rft.epage=15333&rft.pages=15323-15333&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3179557&rft_dat=%3Cproquest_RIE%3E2697563303%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697563303&rft_id=info:pmid/&rft_ieee_id=9789982&rfr_iscdi=true