Fast Kernel Density Estimation with Density Matrices and Random Fourier Features
Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gallego, Joseph A Osorio, Juan F González, Fabio A |
description | Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-based or hashing-based estimators, have been proposed to improve the efficiency of the kernel density estimation method. The novel density kernel density estimation method (DMKDE) uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates. This method has its roots in the KDE and can be considered as an approximation method, without its memory-based restriction. In this paper, we systematically evaluate the novel DMKDE algorithm and compare it with other state-of-the-art fast procedures for approximating the kernel density estimation method on different synthetic data sets. Our experimental results show that DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data. We have made all the code available as an open source software repository. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2697532499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697532499</sourcerecordid><originalsourceid>FETCH-proquest_journals_26975324993</originalsourceid><addsrcrecordid>eNqNi00LwjAQRIMgWLT_YcFzoSb9sGdtEEQQ8V6CrpjSJprdIv57exDPXmbgzZuJiKRSq2SdSTkTMVGbpqksSpnnKhJHbYhhj8FhB1t0ZPkNNbHtDVvv4GX5_uMHw8FekMC4K5zG8D1oPwSLATQaHgLSQkxvpiOMvz0XS12fN7vkEfxzQOKmHR9unBpZVGWuZFZV6j_rA05NPvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697532499</pqid></control><display><type>article</type><title>Fast Kernel Density Estimation with Density Matrices and Random Fourier Features</title><source>Free E- Journals</source><creator>Gallego, Joseph A ; Osorio, Juan F ; González, Fabio A</creator><creatorcontrib>Gallego, Joseph A ; Osorio, Juan F ; González, Fabio A</creatorcontrib><description>Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-based or hashing-based estimators, have been proposed to improve the efficiency of the kernel density estimation method. The novel density kernel density estimation method (DMKDE) uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates. This method has its roots in the KDE and can be considered as an approximation method, without its memory-based restriction. In this paper, we systematically evaluate the novel DMKDE algorithm and compare it with other state-of-the-art fast procedures for approximating the kernel density estimation method on different synthetic data sets. Our experimental results show that DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data. We have made all the code available as an open source software repository.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Approximation ; Big Data ; Datasets ; Density ; Estimates ; Kernels ; Mathematical analysis ; Quantum mechanics ; Source code</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gallego, Joseph A</creatorcontrib><creatorcontrib>Osorio, Juan F</creatorcontrib><creatorcontrib>González, Fabio A</creatorcontrib><title>Fast Kernel Density Estimation with Density Matrices and Random Fourier Features</title><title>arXiv.org</title><description>Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-based or hashing-based estimators, have been proposed to improve the efficiency of the kernel density estimation method. The novel density kernel density estimation method (DMKDE) uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates. This method has its roots in the KDE and can be considered as an approximation method, without its memory-based restriction. In this paper, we systematically evaluate the novel DMKDE algorithm and compare it with other state-of-the-art fast procedures for approximating the kernel density estimation method on different synthetic data sets. Our experimental results show that DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data. We have made all the code available as an open source software repository.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Big Data</subject><subject>Datasets</subject><subject>Density</subject><subject>Estimates</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Quantum mechanics</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi00LwjAQRIMgWLT_YcFzoSb9sGdtEEQQ8V6CrpjSJprdIv57exDPXmbgzZuJiKRSq2SdSTkTMVGbpqksSpnnKhJHbYhhj8FhB1t0ZPkNNbHtDVvv4GX5_uMHw8FekMC4K5zG8D1oPwSLATQaHgLSQkxvpiOMvz0XS12fN7vkEfxzQOKmHR9unBpZVGWuZFZV6j_rA05NPvQ</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Gallego, Joseph A</creator><creator>Osorio, Juan F</creator><creator>González, Fabio A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220804</creationdate><title>Fast Kernel Density Estimation with Density Matrices and Random Fourier Features</title><author>Gallego, Joseph A ; Osorio, Juan F ; González, Fabio A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26975324993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Big Data</topic><topic>Datasets</topic><topic>Density</topic><topic>Estimates</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Quantum mechanics</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Gallego, Joseph A</creatorcontrib><creatorcontrib>Osorio, Juan F</creatorcontrib><creatorcontrib>González, Fabio A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallego, Joseph A</au><au>Osorio, Juan F</au><au>González, Fabio A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fast Kernel Density Estimation with Density Matrices and Random Fourier Features</atitle><jtitle>arXiv.org</jtitle><date>2022-08-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-based or hashing-based estimators, have been proposed to improve the efficiency of the kernel density estimation method. The novel density kernel density estimation method (DMKDE) uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates. This method has its roots in the KDE and can be considered as an approximation method, without its memory-based restriction. In this paper, we systematically evaluate the novel DMKDE algorithm and compare it with other state-of-the-art fast procedures for approximating the kernel density estimation method on different synthetic data sets. Our experimental results show that DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data. We have made all the code available as an open source software repository.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2697532499 |
source | Free E- Journals |
subjects | Algorithms Approximation Big Data Datasets Density Estimates Kernels Mathematical analysis Quantum mechanics Source code |
title | Fast Kernel Density Estimation with Density Matrices and Random Fourier Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fast%20Kernel%20Density%20Estimation%20with%20Density%20Matrices%20and%20Random%20Fourier%20Features&rft.jtitle=arXiv.org&rft.au=Gallego,%20Joseph%20A&rft.date=2022-08-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2697532499%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697532499&rft_id=info:pmid/&rfr_iscdi=true |