Fast Kernel Density Estimation with Density Matrices and Random Fourier Features

Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Gallego, Joseph A, Osorio, Juan F, González, Fabio A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gallego, Joseph A
Osorio, Juan F
González, Fabio A
description Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-based or hashing-based estimators, have been proposed to improve the efficiency of the kernel density estimation method. The novel density kernel density estimation method (DMKDE) uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates. This method has its roots in the KDE and can be considered as an approximation method, without its memory-based restriction. In this paper, we systematically evaluate the novel DMKDE algorithm and compare it with other state-of-the-art fast procedures for approximating the kernel density estimation method on different synthetic data sets. Our experimental results show that DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data. We have made all the code available as an open source software repository.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2697532499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697532499</sourcerecordid><originalsourceid>FETCH-proquest_journals_26975324993</originalsourceid><addsrcrecordid>eNqNi00LwjAQRIMgWLT_YcFzoSb9sGdtEEQQ8V6CrpjSJprdIv57exDPXmbgzZuJiKRSq2SdSTkTMVGbpqksSpnnKhJHbYhhj8FhB1t0ZPkNNbHtDVvv4GX5_uMHw8FekMC4K5zG8D1oPwSLATQaHgLSQkxvpiOMvz0XS12fN7vkEfxzQOKmHR9unBpZVGWuZFZV6j_rA05NPvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697532499</pqid></control><display><type>article</type><title>Fast Kernel Density Estimation with Density Matrices and Random Fourier Features</title><source>Free E- Journals</source><creator>Gallego, Joseph A ; Osorio, Juan F ; González, Fabio A</creator><creatorcontrib>Gallego, Joseph A ; Osorio, Juan F ; González, Fabio A</creatorcontrib><description>Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-based or hashing-based estimators, have been proposed to improve the efficiency of the kernel density estimation method. The novel density kernel density estimation method (DMKDE) uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates. This method has its roots in the KDE and can be considered as an approximation method, without its memory-based restriction. In this paper, we systematically evaluate the novel DMKDE algorithm and compare it with other state-of-the-art fast procedures for approximating the kernel density estimation method on different synthetic data sets. Our experimental results show that DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data. We have made all the code available as an open source software repository.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Approximation ; Big Data ; Datasets ; Density ; Estimates ; Kernels ; Mathematical analysis ; Quantum mechanics ; Source code</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gallego, Joseph A</creatorcontrib><creatorcontrib>Osorio, Juan F</creatorcontrib><creatorcontrib>González, Fabio A</creatorcontrib><title>Fast Kernel Density Estimation with Density Matrices and Random Fourier Features</title><title>arXiv.org</title><description>Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-based or hashing-based estimators, have been proposed to improve the efficiency of the kernel density estimation method. The novel density kernel density estimation method (DMKDE) uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates. This method has its roots in the KDE and can be considered as an approximation method, without its memory-based restriction. In this paper, we systematically evaluate the novel DMKDE algorithm and compare it with other state-of-the-art fast procedures for approximating the kernel density estimation method on different synthetic data sets. Our experimental results show that DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data. We have made all the code available as an open source software repository.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Big Data</subject><subject>Datasets</subject><subject>Density</subject><subject>Estimates</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Quantum mechanics</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi00LwjAQRIMgWLT_YcFzoSb9sGdtEEQQ8V6CrpjSJprdIv57exDPXmbgzZuJiKRSq2SdSTkTMVGbpqksSpnnKhJHbYhhj8FhB1t0ZPkNNbHtDVvv4GX5_uMHw8FekMC4K5zG8D1oPwSLATQaHgLSQkxvpiOMvz0XS12fN7vkEfxzQOKmHR9unBpZVGWuZFZV6j_rA05NPvQ</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Gallego, Joseph A</creator><creator>Osorio, Juan F</creator><creator>González, Fabio A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220804</creationdate><title>Fast Kernel Density Estimation with Density Matrices and Random Fourier Features</title><author>Gallego, Joseph A ; Osorio, Juan F ; González, Fabio A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26975324993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Big Data</topic><topic>Datasets</topic><topic>Density</topic><topic>Estimates</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Quantum mechanics</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Gallego, Joseph A</creatorcontrib><creatorcontrib>Osorio, Juan F</creatorcontrib><creatorcontrib>González, Fabio A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallego, Joseph A</au><au>Osorio, Juan F</au><au>González, Fabio A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fast Kernel Density Estimation with Density Matrices and Random Fourier Features</atitle><jtitle>arXiv.org</jtitle><date>2022-08-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Kernel density estimation (KDE) is one of the most widely used nonparametric density estimation methods. The fact that it is a memory-based method, i.e., it uses the entire training data set for prediction, makes it unsuitable for most current big data applications. Several strategies, such as tree-based or hashing-based estimators, have been proposed to improve the efficiency of the kernel density estimation method. The novel density kernel density estimation method (DMKDE) uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates. This method has its roots in the KDE and can be considered as an approximation method, without its memory-based restriction. In this paper, we systematically evaluate the novel DMKDE algorithm and compare it with other state-of-the-art fast procedures for approximating the kernel density estimation method on different synthetic data sets. Our experimental results show that DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data. We have made all the code available as an open source software repository.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2697532499
source Free E- Journals
subjects Algorithms
Approximation
Big Data
Datasets
Density
Estimates
Kernels
Mathematical analysis
Quantum mechanics
Source code
title Fast Kernel Density Estimation with Density Matrices and Random Fourier Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fast%20Kernel%20Density%20Estimation%20with%20Density%20Matrices%20and%20Random%20Fourier%20Features&rft.jtitle=arXiv.org&rft.au=Gallego,%20Joseph%20A&rft.date=2022-08-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2697532499%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697532499&rft_id=info:pmid/&rfr_iscdi=true