Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions

Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Diaz-Ruiz, Carlos A, Xia, Youya, You, Yurong, Nino, Jose, Chen, Junan, Josephine, Monica, Chen, Xiangyu, Luo, Katie, Wang, Yan, Emond, Marc, Wei-Lun, Chao, Hariharan, Bharath, Weinberger, Kilian Q, Campbell, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Diaz-Ruiz, Carlos A
Xia, Youya
You, Yurong
Nino, Jose
Chen, Junan
Josephine, Monica
Chen, Xiangyu
Luo, Katie
Wang, Yan
Emond, Marc
Wei-Lun, Chao
Hariharan, Bharath
Weinberger, Kilian Q
Campbell, Mark
description Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection process - data is repeatedly recorded along a 15 km route under diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspondence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlusions and 3D bounding boxes. We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, continual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2697532487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697532487</sourcerecordid><originalsourceid>FETCH-proquest_journals_26975324873</originalsourceid><addsrcrecordid>eNqNy9EKgjAYBeARBEn5DoOuBducWrda1F1E0EUX8uP-dCKbbbPnz6IH6OrAOd-ZkYBxvonyhLEFCZ3r4jhmacaE4AG5n3wLNfBU7GgJHhx6ClrS0qqX0g09o61x8MpoOmqJll5wQPAov6pooe9RNx95m-p2AoXRUn0ObkXmD-gdhr9ckvVhfy2O0WDNc0Tnq86MVk9TxdJtJjhL8oz_p97gvkJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697532487</pqid></control><display><type>article</type><title>Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions</title><source>Free E- Journals</source><creator>Diaz-Ruiz, Carlos A ; Xia, Youya ; You, Yurong ; Nino, Jose ; Chen, Junan ; Josephine, Monica ; Chen, Xiangyu ; Luo, Katie ; Wang, Yan ; Emond, Marc ; Wei-Lun, Chao ; Hariharan, Bharath ; Weinberger, Kilian Q ; Campbell, Mark</creator><creatorcontrib>Diaz-Ruiz, Carlos A ; Xia, Youya ; You, Yurong ; Nino, Jose ; Chen, Junan ; Josephine, Monica ; Chen, Xiangyu ; Luo, Katie ; Wang, Yan ; Emond, Marc ; Wei-Lun, Chao ; Hariharan, Bharath ; Weinberger, Kilian Q ; Campbell, Mark</creatorcontrib><description>Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection process - data is repeatedly recorded along a 15 km route under diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspondence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlusions and 3D bounding boxes. We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, continual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Anomalies ; Autonomous cars ; Data collection ; Datasets ; Driving conditions ; Image segmentation ; Object recognition ; Pedestrians ; Perception ; Rain ; Snow ; Traffic ; Weather</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Diaz-Ruiz, Carlos A</creatorcontrib><creatorcontrib>Xia, Youya</creatorcontrib><creatorcontrib>You, Yurong</creatorcontrib><creatorcontrib>Nino, Jose</creatorcontrib><creatorcontrib>Chen, Junan</creatorcontrib><creatorcontrib>Josephine, Monica</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Luo, Katie</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Emond, Marc</creatorcontrib><creatorcontrib>Wei-Lun, Chao</creatorcontrib><creatorcontrib>Hariharan, Bharath</creatorcontrib><creatorcontrib>Weinberger, Kilian Q</creatorcontrib><creatorcontrib>Campbell, Mark</creatorcontrib><title>Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions</title><title>arXiv.org</title><description>Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection process - data is repeatedly recorded along a 15 km route under diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspondence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlusions and 3D bounding boxes. We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, continual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/</description><subject>Annotations</subject><subject>Anomalies</subject><subject>Autonomous cars</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Driving conditions</subject><subject>Image segmentation</subject><subject>Object recognition</subject><subject>Pedestrians</subject><subject>Perception</subject><subject>Rain</subject><subject>Snow</subject><subject>Traffic</subject><subject>Weather</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy9EKgjAYBeARBEn5DoOuBducWrda1F1E0EUX8uP-dCKbbbPnz6IH6OrAOd-ZkYBxvonyhLEFCZ3r4jhmacaE4AG5n3wLNfBU7GgJHhx6ClrS0qqX0g09o61x8MpoOmqJll5wQPAov6pooe9RNx95m-p2AoXRUn0ObkXmD-gdhr9ckvVhfy2O0WDNc0Tnq86MVk9TxdJtJjhL8oz_p97gvkJS</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Diaz-Ruiz, Carlos A</creator><creator>Xia, Youya</creator><creator>You, Yurong</creator><creator>Nino, Jose</creator><creator>Chen, Junan</creator><creator>Josephine, Monica</creator><creator>Chen, Xiangyu</creator><creator>Luo, Katie</creator><creator>Wang, Yan</creator><creator>Emond, Marc</creator><creator>Wei-Lun, Chao</creator><creator>Hariharan, Bharath</creator><creator>Weinberger, Kilian Q</creator><creator>Campbell, Mark</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220801</creationdate><title>Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions</title><author>Diaz-Ruiz, Carlos A ; Xia, Youya ; You, Yurong ; Nino, Jose ; Chen, Junan ; Josephine, Monica ; Chen, Xiangyu ; Luo, Katie ; Wang, Yan ; Emond, Marc ; Wei-Lun, Chao ; Hariharan, Bharath ; Weinberger, Kilian Q ; Campbell, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26975324873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Anomalies</topic><topic>Autonomous cars</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Driving conditions</topic><topic>Image segmentation</topic><topic>Object recognition</topic><topic>Pedestrians</topic><topic>Perception</topic><topic>Rain</topic><topic>Snow</topic><topic>Traffic</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Diaz-Ruiz, Carlos A</creatorcontrib><creatorcontrib>Xia, Youya</creatorcontrib><creatorcontrib>You, Yurong</creatorcontrib><creatorcontrib>Nino, Jose</creatorcontrib><creatorcontrib>Chen, Junan</creatorcontrib><creatorcontrib>Josephine, Monica</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Luo, Katie</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Emond, Marc</creatorcontrib><creatorcontrib>Wei-Lun, Chao</creatorcontrib><creatorcontrib>Hariharan, Bharath</creatorcontrib><creatorcontrib>Weinberger, Kilian Q</creatorcontrib><creatorcontrib>Campbell, Mark</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaz-Ruiz, Carlos A</au><au>Xia, Youya</au><au>You, Yurong</au><au>Nino, Jose</au><au>Chen, Junan</au><au>Josephine, Monica</au><au>Chen, Xiangyu</au><au>Luo, Katie</au><au>Wang, Yan</au><au>Emond, Marc</au><au>Wei-Lun, Chao</au><au>Hariharan, Bharath</au><au>Weinberger, Kilian Q</au><au>Campbell, Mark</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions</atitle><jtitle>arXiv.org</jtitle><date>2022-08-01</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection process - data is repeatedly recorded along a 15 km route under diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspondence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlusions and 3D bounding boxes. We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, continual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2697532487
source Free E- Journals
subjects Annotations
Anomalies
Autonomous cars
Data collection
Datasets
Driving conditions
Image segmentation
Object recognition
Pedestrians
Perception
Rain
Snow
Traffic
Weather
title Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ithaca365:%20Dataset%20and%20Driving%20Perception%20under%20Repeated%20and%20Challenging%20Weather%20Conditions&rft.jtitle=arXiv.org&rft.au=Diaz-Ruiz,%20Carlos%20A&rft.date=2022-08-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2697532487%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697532487&rft_id=info:pmid/&rfr_iscdi=true