Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions
Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly unde...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Diaz-Ruiz, Carlos A Xia, Youya You, Yurong Nino, Jose Chen, Junan Josephine, Monica Chen, Xiangyu Luo, Katie Wang, Yan Emond, Marc Wei-Lun, Chao Hariharan, Bharath Weinberger, Kilian Q Campbell, Mark |
description | Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection process - data is repeatedly recorded along a 15 km route under diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspondence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlusions and 3D bounding boxes. We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, continual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/ |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2697532487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697532487</sourcerecordid><originalsourceid>FETCH-proquest_journals_26975324873</originalsourceid><addsrcrecordid>eNqNy9EKgjAYBeARBEn5DoOuBducWrda1F1E0EUX8uP-dCKbbbPnz6IH6OrAOd-ZkYBxvonyhLEFCZ3r4jhmacaE4AG5n3wLNfBU7GgJHhx6ClrS0qqX0g09o61x8MpoOmqJll5wQPAov6pooe9RNx95m-p2AoXRUn0ObkXmD-gdhr9ckvVhfy2O0WDNc0Tnq86MVk9TxdJtJjhL8oz_p97gvkJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697532487</pqid></control><display><type>article</type><title>Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions</title><source>Free E- Journals</source><creator>Diaz-Ruiz, Carlos A ; Xia, Youya ; You, Yurong ; Nino, Jose ; Chen, Junan ; Josephine, Monica ; Chen, Xiangyu ; Luo, Katie ; Wang, Yan ; Emond, Marc ; Wei-Lun, Chao ; Hariharan, Bharath ; Weinberger, Kilian Q ; Campbell, Mark</creator><creatorcontrib>Diaz-Ruiz, Carlos A ; Xia, Youya ; You, Yurong ; Nino, Jose ; Chen, Junan ; Josephine, Monica ; Chen, Xiangyu ; Luo, Katie ; Wang, Yan ; Emond, Marc ; Wei-Lun, Chao ; Hariharan, Bharath ; Weinberger, Kilian Q ; Campbell, Mark</creatorcontrib><description>Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection process - data is repeatedly recorded along a 15 km route under diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspondence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlusions and 3D bounding boxes. We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, continual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Anomalies ; Autonomous cars ; Data collection ; Datasets ; Driving conditions ; Image segmentation ; Object recognition ; Pedestrians ; Perception ; Rain ; Snow ; Traffic ; Weather</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Diaz-Ruiz, Carlos A</creatorcontrib><creatorcontrib>Xia, Youya</creatorcontrib><creatorcontrib>You, Yurong</creatorcontrib><creatorcontrib>Nino, Jose</creatorcontrib><creatorcontrib>Chen, Junan</creatorcontrib><creatorcontrib>Josephine, Monica</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Luo, Katie</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Emond, Marc</creatorcontrib><creatorcontrib>Wei-Lun, Chao</creatorcontrib><creatorcontrib>Hariharan, Bharath</creatorcontrib><creatorcontrib>Weinberger, Kilian Q</creatorcontrib><creatorcontrib>Campbell, Mark</creatorcontrib><title>Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions</title><title>arXiv.org</title><description>Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection process - data is repeatedly recorded along a 15 km route under diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspondence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlusions and 3D bounding boxes. We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, continual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/</description><subject>Annotations</subject><subject>Anomalies</subject><subject>Autonomous cars</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Driving conditions</subject><subject>Image segmentation</subject><subject>Object recognition</subject><subject>Pedestrians</subject><subject>Perception</subject><subject>Rain</subject><subject>Snow</subject><subject>Traffic</subject><subject>Weather</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy9EKgjAYBeARBEn5DoOuBducWrda1F1E0EUX8uP-dCKbbbPnz6IH6OrAOd-ZkYBxvonyhLEFCZ3r4jhmacaE4AG5n3wLNfBU7GgJHhx6ClrS0qqX0g09o61x8MpoOmqJll5wQPAov6pooe9RNx95m-p2AoXRUn0ObkXmD-gdhr9ckvVhfy2O0WDNc0Tnq86MVk9TxdJtJjhL8oz_p97gvkJS</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Diaz-Ruiz, Carlos A</creator><creator>Xia, Youya</creator><creator>You, Yurong</creator><creator>Nino, Jose</creator><creator>Chen, Junan</creator><creator>Josephine, Monica</creator><creator>Chen, Xiangyu</creator><creator>Luo, Katie</creator><creator>Wang, Yan</creator><creator>Emond, Marc</creator><creator>Wei-Lun, Chao</creator><creator>Hariharan, Bharath</creator><creator>Weinberger, Kilian Q</creator><creator>Campbell, Mark</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220801</creationdate><title>Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions</title><author>Diaz-Ruiz, Carlos A ; Xia, Youya ; You, Yurong ; Nino, Jose ; Chen, Junan ; Josephine, Monica ; Chen, Xiangyu ; Luo, Katie ; Wang, Yan ; Emond, Marc ; Wei-Lun, Chao ; Hariharan, Bharath ; Weinberger, Kilian Q ; Campbell, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26975324873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Anomalies</topic><topic>Autonomous cars</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Driving conditions</topic><topic>Image segmentation</topic><topic>Object recognition</topic><topic>Pedestrians</topic><topic>Perception</topic><topic>Rain</topic><topic>Snow</topic><topic>Traffic</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Diaz-Ruiz, Carlos A</creatorcontrib><creatorcontrib>Xia, Youya</creatorcontrib><creatorcontrib>You, Yurong</creatorcontrib><creatorcontrib>Nino, Jose</creatorcontrib><creatorcontrib>Chen, Junan</creatorcontrib><creatorcontrib>Josephine, Monica</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Luo, Katie</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Emond, Marc</creatorcontrib><creatorcontrib>Wei-Lun, Chao</creatorcontrib><creatorcontrib>Hariharan, Bharath</creatorcontrib><creatorcontrib>Weinberger, Kilian Q</creatorcontrib><creatorcontrib>Campbell, Mark</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaz-Ruiz, Carlos A</au><au>Xia, Youya</au><au>You, Yurong</au><au>Nino, Jose</au><au>Chen, Junan</au><au>Josephine, Monica</au><au>Chen, Xiangyu</au><au>Luo, Katie</au><au>Wang, Yan</au><au>Emond, Marc</au><au>Wei-Lun, Chao</au><au>Hariharan, Bharath</au><au>Weinberger, Kilian Q</au><au>Campbell, Mark</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions</atitle><jtitle>arXiv.org</jtitle><date>2022-08-01</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Advances in perception for self-driving cars have accelerated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety requirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection process - data is repeatedly recorded along a 15 km route under diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes images and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspondence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlusions and 3D bounding boxes. We demonstrate the uniqueness of this dataset by analyzing the performance of baselines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, continual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2697532487 |
source | Free E- Journals |
subjects | Annotations Anomalies Autonomous cars Data collection Datasets Driving conditions Image segmentation Object recognition Pedestrians Perception Rain Snow Traffic Weather |
title | Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ithaca365:%20Dataset%20and%20Driving%20Perception%20under%20Repeated%20and%20Challenging%20Weather%20Conditions&rft.jtitle=arXiv.org&rft.au=Diaz-Ruiz,%20Carlos%20A&rft.date=2022-08-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2697532487%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697532487&rft_id=info:pmid/&rfr_iscdi=true |