Direct Visualization of Localized Vibrations at Complex Grain Boundaries

Grain boundaries (GBs) are a prolific microstructural feature that dominates the functionality of a wide class of materials. The change in functionality at a GB is a direct result of unique local atomic arrangements, different from those in the grain, that have driven extensive experimental and theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Hoglund, Eric R, De-Liang, Bao, O'Hara, Andrew, Pfeifer, Thomas W, Md Shafkat Bin Hoque, Makarem, Sara, Howe, James M, Pantelides, Sokrates T, Hopkins, Patrick E, Hachtel, Jordan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hoglund, Eric R
De-Liang, Bao
O'Hara, Andrew
Pfeifer, Thomas W
Md Shafkat Bin Hoque
Makarem, Sara
Howe, James M
Pantelides, Sokrates T
Hopkins, Patrick E
Hachtel, Jordan A
description Grain boundaries (GBs) are a prolific microstructural feature that dominates the functionality of a wide class of materials. The change in functionality at a GB is a direct result of unique local atomic arrangements, different from those in the grain, that have driven extensive experimental and theoretical studies correlating atomic-scale GB structures to macroscopic electronic, infrared-optical, and thermal properties. Here, we examine a SrTiO3 GB using atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) and ultra-high-energy-resolution monochromated electron energy-loss spectroscopy (EELS), in conjunction with density functional theory (DFT) calculations. This combination enables the direct correlation of the GB structure, composition, and chemical bonding with atomic vibrations within the GB dislocation-cores. We observe that nonstoichiometry and changes in coordination and bonding at the GB leads to a redistribution of vibrational states at the GB and its dislocation-cores relative to the bounding grains. The access to localized vibrations within GBs provided by ultrahigh spatial/spectral resolution EELS correlated with atomic coordination, bonding, and stoichiometry and validated by theory, provides a direct route to quantifying the impact of individual boundaries on macroscopic properties.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2697201722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697201722</sourcerecordid><originalsourceid>FETCH-proquest_journals_26972017223</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_MOC6kE5sq1vra-FS3JbYppBSk5pJQPx6q_gBri7nnDthEQqRJusV4ozFRB3nHPMCs0xE7LTTTtUerpqC7PVLem0N2BbOtv6wasZ0c19NID2U9j706glHJ7WBrQ2mkU4rWrBpK3tS8W_nbHnYX8pTMjj7CIp81dngzJgqzDcF8rRAFP-93lTpPB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697201722</pqid></control><display><type>article</type><title>Direct Visualization of Localized Vibrations at Complex Grain Boundaries</title><source>Free E- Journals</source><creator>Hoglund, Eric R ; De-Liang, Bao ; O'Hara, Andrew ; Pfeifer, Thomas W ; Md Shafkat Bin Hoque ; Makarem, Sara ; Howe, James M ; Pantelides, Sokrates T ; Hopkins, Patrick E ; Hachtel, Jordan A</creator><creatorcontrib>Hoglund, Eric R ; De-Liang, Bao ; O'Hara, Andrew ; Pfeifer, Thomas W ; Md Shafkat Bin Hoque ; Makarem, Sara ; Howe, James M ; Pantelides, Sokrates T ; Hopkins, Patrick E ; Hachtel, Jordan A</creatorcontrib><description>Grain boundaries (GBs) are a prolific microstructural feature that dominates the functionality of a wide class of materials. The change in functionality at a GB is a direct result of unique local atomic arrangements, different from those in the grain, that have driven extensive experimental and theoretical studies correlating atomic-scale GB structures to macroscopic electronic, infrared-optical, and thermal properties. Here, we examine a SrTiO3 GB using atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) and ultra-high-energy-resolution monochromated electron energy-loss spectroscopy (EELS), in conjunction with density functional theory (DFT) calculations. This combination enables the direct correlation of the GB structure, composition, and chemical bonding with atomic vibrations within the GB dislocation-cores. We observe that nonstoichiometry and changes in coordination and bonding at the GB leads to a redistribution of vibrational states at the GB and its dislocation-cores relative to the bounding grains. The access to localized vibrations within GBs provided by ultrahigh spatial/spectral resolution EELS correlated with atomic coordination, bonding, and stoichiometry and validated by theory, provides a direct route to quantifying the impact of individual boundaries on macroscopic properties.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical bonds ; Chemical composition ; Coordination ; Density functional theory ; Electron energy ; Electron energy loss spectroscopy ; Electrons ; Grain boundaries ; Optical properties ; Scanning transmission electron microscopy ; Spectral resolution ; Stoichiometry ; Thermodynamic properties ; Vibrational states</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Hoglund, Eric R</creatorcontrib><creatorcontrib>De-Liang, Bao</creatorcontrib><creatorcontrib>O'Hara, Andrew</creatorcontrib><creatorcontrib>Pfeifer, Thomas W</creatorcontrib><creatorcontrib>Md Shafkat Bin Hoque</creatorcontrib><creatorcontrib>Makarem, Sara</creatorcontrib><creatorcontrib>Howe, James M</creatorcontrib><creatorcontrib>Pantelides, Sokrates T</creatorcontrib><creatorcontrib>Hopkins, Patrick E</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><title>Direct Visualization of Localized Vibrations at Complex Grain Boundaries</title><title>arXiv.org</title><description>Grain boundaries (GBs) are a prolific microstructural feature that dominates the functionality of a wide class of materials. The change in functionality at a GB is a direct result of unique local atomic arrangements, different from those in the grain, that have driven extensive experimental and theoretical studies correlating atomic-scale GB structures to macroscopic electronic, infrared-optical, and thermal properties. Here, we examine a SrTiO3 GB using atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) and ultra-high-energy-resolution monochromated electron energy-loss spectroscopy (EELS), in conjunction with density functional theory (DFT) calculations. This combination enables the direct correlation of the GB structure, composition, and chemical bonding with atomic vibrations within the GB dislocation-cores. We observe that nonstoichiometry and changes in coordination and bonding at the GB leads to a redistribution of vibrational states at the GB and its dislocation-cores relative to the bounding grains. The access to localized vibrations within GBs provided by ultrahigh spatial/spectral resolution EELS correlated with atomic coordination, bonding, and stoichiometry and validated by theory, provides a direct route to quantifying the impact of individual boundaries on macroscopic properties.</description><subject>Chemical bonds</subject><subject>Chemical composition</subject><subject>Coordination</subject><subject>Density functional theory</subject><subject>Electron energy</subject><subject>Electron energy loss spectroscopy</subject><subject>Electrons</subject><subject>Grain boundaries</subject><subject>Optical properties</subject><subject>Scanning transmission electron microscopy</subject><subject>Spectral resolution</subject><subject>Stoichiometry</subject><subject>Thermodynamic properties</subject><subject>Vibrational states</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQRYMgWLT_MOC6kE5sq1vra-FS3JbYppBSk5pJQPx6q_gBri7nnDthEQqRJusV4ozFRB3nHPMCs0xE7LTTTtUerpqC7PVLem0N2BbOtv6wasZ0c19NID2U9j706glHJ7WBrQ2mkU4rWrBpK3tS8W_nbHnYX8pTMjj7CIp81dngzJgqzDcF8rRAFP-93lTpPB0</recordid><startdate>20220824</startdate><enddate>20220824</enddate><creator>Hoglund, Eric R</creator><creator>De-Liang, Bao</creator><creator>O'Hara, Andrew</creator><creator>Pfeifer, Thomas W</creator><creator>Md Shafkat Bin Hoque</creator><creator>Makarem, Sara</creator><creator>Howe, James M</creator><creator>Pantelides, Sokrates T</creator><creator>Hopkins, Patrick E</creator><creator>Hachtel, Jordan A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220824</creationdate><title>Direct Visualization of Localized Vibrations at Complex Grain Boundaries</title><author>Hoglund, Eric R ; De-Liang, Bao ; O'Hara, Andrew ; Pfeifer, Thomas W ; Md Shafkat Bin Hoque ; Makarem, Sara ; Howe, James M ; Pantelides, Sokrates T ; Hopkins, Patrick E ; Hachtel, Jordan A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26972017223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical bonds</topic><topic>Chemical composition</topic><topic>Coordination</topic><topic>Density functional theory</topic><topic>Electron energy</topic><topic>Electron energy loss spectroscopy</topic><topic>Electrons</topic><topic>Grain boundaries</topic><topic>Optical properties</topic><topic>Scanning transmission electron microscopy</topic><topic>Spectral resolution</topic><topic>Stoichiometry</topic><topic>Thermodynamic properties</topic><topic>Vibrational states</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoglund, Eric R</creatorcontrib><creatorcontrib>De-Liang, Bao</creatorcontrib><creatorcontrib>O'Hara, Andrew</creatorcontrib><creatorcontrib>Pfeifer, Thomas W</creatorcontrib><creatorcontrib>Md Shafkat Bin Hoque</creatorcontrib><creatorcontrib>Makarem, Sara</creatorcontrib><creatorcontrib>Howe, James M</creatorcontrib><creatorcontrib>Pantelides, Sokrates T</creatorcontrib><creatorcontrib>Hopkins, Patrick E</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoglund, Eric R</au><au>De-Liang, Bao</au><au>O'Hara, Andrew</au><au>Pfeifer, Thomas W</au><au>Md Shafkat Bin Hoque</au><au>Makarem, Sara</au><au>Howe, James M</au><au>Pantelides, Sokrates T</au><au>Hopkins, Patrick E</au><au>Hachtel, Jordan A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Direct Visualization of Localized Vibrations at Complex Grain Boundaries</atitle><jtitle>arXiv.org</jtitle><date>2022-08-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Grain boundaries (GBs) are a prolific microstructural feature that dominates the functionality of a wide class of materials. The change in functionality at a GB is a direct result of unique local atomic arrangements, different from those in the grain, that have driven extensive experimental and theoretical studies correlating atomic-scale GB structures to macroscopic electronic, infrared-optical, and thermal properties. Here, we examine a SrTiO3 GB using atomic-resolution aberration-corrected scanning transmission electron microscopy (STEM) and ultra-high-energy-resolution monochromated electron energy-loss spectroscopy (EELS), in conjunction with density functional theory (DFT) calculations. This combination enables the direct correlation of the GB structure, composition, and chemical bonding with atomic vibrations within the GB dislocation-cores. We observe that nonstoichiometry and changes in coordination and bonding at the GB leads to a redistribution of vibrational states at the GB and its dislocation-cores relative to the bounding grains. The access to localized vibrations within GBs provided by ultrahigh spatial/spectral resolution EELS correlated with atomic coordination, bonding, and stoichiometry and validated by theory, provides a direct route to quantifying the impact of individual boundaries on macroscopic properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2697201722
source Free E- Journals
subjects Chemical bonds
Chemical composition
Coordination
Density functional theory
Electron energy
Electron energy loss spectroscopy
Electrons
Grain boundaries
Optical properties
Scanning transmission electron microscopy
Spectral resolution
Stoichiometry
Thermodynamic properties
Vibrational states
title Direct Visualization of Localized Vibrations at Complex Grain Boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Direct%20Visualization%20of%20Localized%20Vibrations%20at%20Complex%20Grain%20Boundaries&rft.jtitle=arXiv.org&rft.au=Hoglund,%20Eric%20R&rft.date=2022-08-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2697201722%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697201722&rft_id=info:pmid/&rfr_iscdi=true