The use of hybrid machine learning models for improving the GALDIT model for coastal aquifer vulnerability mapping

The objective of this study was to improve the predictability of the GALDIT (G: groundwater occurrence, A: aquifer hydraulic conductivity, L: level of groundwater above sea level, D: distance from the shoreline, I: impact of the seawater intrusion, and T: thickness of the aquifer) groundwater vulner...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2022-08, Vol.81 (15), Article 402
Hauptverfasser: Bordbar, Mojgan, Khosravi, Khabat, Murgulet, Dorina, Tsai, Frank T.-C., Golkarian, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Environmental earth sciences
container_volume 81
creator Bordbar, Mojgan
Khosravi, Khabat
Murgulet, Dorina
Tsai, Frank T.-C.
Golkarian, Ali
description The objective of this study was to improve the predictability of the GALDIT (G: groundwater occurrence, A: aquifer hydraulic conductivity, L: level of groundwater above sea level, D: distance from the shoreline, I: impact of the seawater intrusion, and T: thickness of the aquifer) groundwater vulnerability model using machine leaning methods. This study evaluated eight state-of-the-art machine learning methods, including the naïve Bayes tree (NBT) and logistic model tree (LMT) methods, and their combinations with the dagging (DA), bagging (BA), and random subspace (RS) methods. The results of the machine leaning methods were compared against the benchmark GALDIT model. The coastal Gharesoo-Gorgan Rood aquifer, North Iran, was used as a case study for the proposed methodology. Two sets of total dissolved solids (TDS) samples from 53 wells were collected in 2017 and 2018 and used for the GALDIT modeling and validation purposes, respectively. Correlation coefficient ( r ) values were calculated for model validation and prediction accuracy by comparison with the TDS data. All eight machine learning models performed well in assessing the coastal aquifer vulnerability with respect to the GALDIT model. The best result was obtained by the BA-LMT model ( r  = 0.931), followed by the DA-LMT model ( r  = 0.911), the BA-NBT model ( r  = 0.904), the DA-NBT model ( r  = 0.896), the RS-NBT model ( r  = 0.882), the RS-LMT ( r  = 0.873), the LMT ( r  = 0.863), the NBT ( r  = 0.850), and GALDIT model ( r  = 0.480).
doi_str_mv 10.1007/s12665-022-10534-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696969584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696969584</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-f41f8933b525def7232d95ae21318069cfd2c8dfe345f61783b8c4e64c1b979f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxDrgR-LYy6pAqVSJTVlbTjJuXeXR2kml_j1ug2DHeDEjzz3X1kXokZJnSkj-EigTIksIYwklGU8TdoMmVAqRCKbU7e8syT2ahbAnsTjliogJ8psd4CEA7izenQvvKtyYcudawDUY37p2i5uugjpg23nsmoPvTpfLPnLL-fp1tRn313XZmdCbGpvj4Cx4fBrqFrwpXO36czQ-HCL6gO6sqQPMfvoUfb2_bRYfyfpzuVrM14nhKesTm1IrFedFxrIKbM44q1RmgFFOJRGqtBUrZWWBp5kVNJe8kGUKIi1poXJl-RQ9jb7xy8cBQq_33eDb-KRmQl1OJtOoYqOq9F0IHqw-eNcYf9aU6Eu8eoxXx3j1NV7NIsRHKERxuwX_Z_0P9Q1NdH3P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696969584</pqid></control><display><type>article</type><title>The use of hybrid machine learning models for improving the GALDIT model for coastal aquifer vulnerability mapping</title><source>SpringerLink Journals</source><creator>Bordbar, Mojgan ; Khosravi, Khabat ; Murgulet, Dorina ; Tsai, Frank T.-C. ; Golkarian, Ali</creator><creatorcontrib>Bordbar, Mojgan ; Khosravi, Khabat ; Murgulet, Dorina ; Tsai, Frank T.-C. ; Golkarian, Ali</creatorcontrib><description>The objective of this study was to improve the predictability of the GALDIT (G: groundwater occurrence, A: aquifer hydraulic conductivity, L: level of groundwater above sea level, D: distance from the shoreline, I: impact of the seawater intrusion, and T: thickness of the aquifer) groundwater vulnerability model using machine leaning methods. This study evaluated eight state-of-the-art machine learning methods, including the naïve Bayes tree (NBT) and logistic model tree (LMT) methods, and their combinations with the dagging (DA), bagging (BA), and random subspace (RS) methods. The results of the machine leaning methods were compared against the benchmark GALDIT model. The coastal Gharesoo-Gorgan Rood aquifer, North Iran, was used as a case study for the proposed methodology. Two sets of total dissolved solids (TDS) samples from 53 wells were collected in 2017 and 2018 and used for the GALDIT modeling and validation purposes, respectively. Correlation coefficient ( r ) values were calculated for model validation and prediction accuracy by comparison with the TDS data. All eight machine learning models performed well in assessing the coastal aquifer vulnerability with respect to the GALDIT model. The best result was obtained by the BA-LMT model ( r  = 0.931), followed by the DA-LMT model ( r  = 0.911), the BA-NBT model ( r  = 0.904), the DA-NBT model ( r  = 0.896), the RS-NBT model ( r  = 0.882), the RS-LMT ( r  = 0.873), the LMT ( r  = 0.863), the NBT ( r  = 0.850), and GALDIT model ( r  = 0.480).</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-022-10534-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquifer models ; Aquifers ; Bayesian analysis ; Biogeosciences ; Chemical analysis ; Coastal aquifers ; Correlation coefficient ; Correlation coefficients ; Dissolved solids ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Geochemistry ; Geology ; Groundwater ; Hydraulic conductivity ; Hydrology/Water Resources ; Learning algorithms ; Machine learning ; Methods ; Modelling ; Original Article ; Saline water intrusion ; Salt water intrusion ; Sea level ; Seawater ; Seawater intrusion ; Shorelines ; State-of-the-art reviews ; Terrestrial Pollution ; Total dissolved solids ; Vulnerability ; Water analysis</subject><ispartof>Environmental earth sciences, 2022-08, Vol.81 (15), Article 402</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-f41f8933b525def7232d95ae21318069cfd2c8dfe345f61783b8c4e64c1b979f3</citedby><cites>FETCH-LOGICAL-a342t-f41f8933b525def7232d95ae21318069cfd2c8dfe345f61783b8c4e64c1b979f3</cites><orcidid>0000-0003-0697-6525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-022-10534-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-022-10534-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bordbar, Mojgan</creatorcontrib><creatorcontrib>Khosravi, Khabat</creatorcontrib><creatorcontrib>Murgulet, Dorina</creatorcontrib><creatorcontrib>Tsai, Frank T.-C.</creatorcontrib><creatorcontrib>Golkarian, Ali</creatorcontrib><title>The use of hybrid machine learning models for improving the GALDIT model for coastal aquifer vulnerability mapping</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>The objective of this study was to improve the predictability of the GALDIT (G: groundwater occurrence, A: aquifer hydraulic conductivity, L: level of groundwater above sea level, D: distance from the shoreline, I: impact of the seawater intrusion, and T: thickness of the aquifer) groundwater vulnerability model using machine leaning methods. This study evaluated eight state-of-the-art machine learning methods, including the naïve Bayes tree (NBT) and logistic model tree (LMT) methods, and their combinations with the dagging (DA), bagging (BA), and random subspace (RS) methods. The results of the machine leaning methods were compared against the benchmark GALDIT model. The coastal Gharesoo-Gorgan Rood aquifer, North Iran, was used as a case study for the proposed methodology. Two sets of total dissolved solids (TDS) samples from 53 wells were collected in 2017 and 2018 and used for the GALDIT modeling and validation purposes, respectively. Correlation coefficient ( r ) values were calculated for model validation and prediction accuracy by comparison with the TDS data. All eight machine learning models performed well in assessing the coastal aquifer vulnerability with respect to the GALDIT model. The best result was obtained by the BA-LMT model ( r  = 0.931), followed by the DA-LMT model ( r  = 0.911), the BA-NBT model ( r  = 0.904), the DA-NBT model ( r  = 0.896), the RS-NBT model ( r  = 0.882), the RS-LMT ( r  = 0.873), the LMT ( r  = 0.863), the NBT ( r  = 0.850), and GALDIT model ( r  = 0.480).</description><subject>Aquifer models</subject><subject>Aquifers</subject><subject>Bayesian analysis</subject><subject>Biogeosciences</subject><subject>Chemical analysis</subject><subject>Coastal aquifers</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Dissolved solids</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Hydraulic conductivity</subject><subject>Hydrology/Water Resources</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Modelling</subject><subject>Original Article</subject><subject>Saline water intrusion</subject><subject>Salt water intrusion</subject><subject>Sea level</subject><subject>Seawater</subject><subject>Seawater intrusion</subject><subject>Shorelines</subject><subject>State-of-the-art reviews</subject><subject>Terrestrial Pollution</subject><subject>Total dissolved solids</subject><subject>Vulnerability</subject><subject>Water analysis</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EElXpD7CyxDrgR-LYy6pAqVSJTVlbTjJuXeXR2kml_j1ug2DHeDEjzz3X1kXokZJnSkj-EigTIksIYwklGU8TdoMmVAqRCKbU7e8syT2ahbAnsTjliogJ8psd4CEA7izenQvvKtyYcudawDUY37p2i5uugjpg23nsmoPvTpfLPnLL-fp1tRn313XZmdCbGpvj4Cx4fBrqFrwpXO36czQ-HCL6gO6sqQPMfvoUfb2_bRYfyfpzuVrM14nhKesTm1IrFedFxrIKbM44q1RmgFFOJRGqtBUrZWWBp5kVNJe8kGUKIi1poXJl-RQ9jb7xy8cBQq_33eDb-KRmQl1OJtOoYqOq9F0IHqw-eNcYf9aU6Eu8eoxXx3j1NV7NIsRHKERxuwX_Z_0P9Q1NdH3P</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bordbar, Mojgan</creator><creator>Khosravi, Khabat</creator><creator>Murgulet, Dorina</creator><creator>Tsai, Frank T.-C.</creator><creator>Golkarian, Ali</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0697-6525</orcidid></search><sort><creationdate>20220801</creationdate><title>The use of hybrid machine learning models for improving the GALDIT model for coastal aquifer vulnerability mapping</title><author>Bordbar, Mojgan ; Khosravi, Khabat ; Murgulet, Dorina ; Tsai, Frank T.-C. ; Golkarian, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-f41f8933b525def7232d95ae21318069cfd2c8dfe345f61783b8c4e64c1b979f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aquifer models</topic><topic>Aquifers</topic><topic>Bayesian analysis</topic><topic>Biogeosciences</topic><topic>Chemical analysis</topic><topic>Coastal aquifers</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Dissolved solids</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Hydraulic conductivity</topic><topic>Hydrology/Water Resources</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Modelling</topic><topic>Original Article</topic><topic>Saline water intrusion</topic><topic>Salt water intrusion</topic><topic>Sea level</topic><topic>Seawater</topic><topic>Seawater intrusion</topic><topic>Shorelines</topic><topic>State-of-the-art reviews</topic><topic>Terrestrial Pollution</topic><topic>Total dissolved solids</topic><topic>Vulnerability</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bordbar, Mojgan</creatorcontrib><creatorcontrib>Khosravi, Khabat</creatorcontrib><creatorcontrib>Murgulet, Dorina</creatorcontrib><creatorcontrib>Tsai, Frank T.-C.</creatorcontrib><creatorcontrib>Golkarian, Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bordbar, Mojgan</au><au>Khosravi, Khabat</au><au>Murgulet, Dorina</au><au>Tsai, Frank T.-C.</au><au>Golkarian, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of hybrid machine learning models for improving the GALDIT model for coastal aquifer vulnerability mapping</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>81</volume><issue>15</issue><artnum>402</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>The objective of this study was to improve the predictability of the GALDIT (G: groundwater occurrence, A: aquifer hydraulic conductivity, L: level of groundwater above sea level, D: distance from the shoreline, I: impact of the seawater intrusion, and T: thickness of the aquifer) groundwater vulnerability model using machine leaning methods. This study evaluated eight state-of-the-art machine learning methods, including the naïve Bayes tree (NBT) and logistic model tree (LMT) methods, and their combinations with the dagging (DA), bagging (BA), and random subspace (RS) methods. The results of the machine leaning methods were compared against the benchmark GALDIT model. The coastal Gharesoo-Gorgan Rood aquifer, North Iran, was used as a case study for the proposed methodology. Two sets of total dissolved solids (TDS) samples from 53 wells were collected in 2017 and 2018 and used for the GALDIT modeling and validation purposes, respectively. Correlation coefficient ( r ) values were calculated for model validation and prediction accuracy by comparison with the TDS data. All eight machine learning models performed well in assessing the coastal aquifer vulnerability with respect to the GALDIT model. The best result was obtained by the BA-LMT model ( r  = 0.931), followed by the DA-LMT model ( r  = 0.911), the BA-NBT model ( r  = 0.904), the DA-NBT model ( r  = 0.896), the RS-NBT model ( r  = 0.882), the RS-LMT ( r  = 0.873), the LMT ( r  = 0.863), the NBT ( r  = 0.850), and GALDIT model ( r  = 0.480).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-022-10534-2</doi><orcidid>https://orcid.org/0000-0003-0697-6525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2022-08, Vol.81 (15), Article 402
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_journals_2696969584
source SpringerLink Journals
subjects Aquifer models
Aquifers
Bayesian analysis
Biogeosciences
Chemical analysis
Coastal aquifers
Correlation coefficient
Correlation coefficients
Dissolved solids
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Geochemistry
Geology
Groundwater
Hydraulic conductivity
Hydrology/Water Resources
Learning algorithms
Machine learning
Methods
Modelling
Original Article
Saline water intrusion
Salt water intrusion
Sea level
Seawater
Seawater intrusion
Shorelines
State-of-the-art reviews
Terrestrial Pollution
Total dissolved solids
Vulnerability
Water analysis
title The use of hybrid machine learning models for improving the GALDIT model for coastal aquifer vulnerability mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20hybrid%20machine%20learning%20models%20for%20improving%20the%20GALDIT%20model%20for%20coastal%20aquifer%20vulnerability%20mapping&rft.jtitle=Environmental%20earth%20sciences&rft.au=Bordbar,%20Mojgan&rft.date=2022-08-01&rft.volume=81&rft.issue=15&rft.artnum=402&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-022-10534-2&rft_dat=%3Cproquest_cross%3E2696969584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696969584&rft_id=info:pmid/&rfr_iscdi=true