Human Emotions Classification Using EEG via Audiovisual Stimuli and AI

Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2022, Vol.73 (3), p.5075-5089
Hauptverfasser: A Asiri, Abdullah, Badshah, Akhtar, Muhammad, Fazal, A Alshamrani, Hassan, Ullah, Khalil, A Alshamrani, Khalaf, Alqhtani, Samar, Irfan, Muhammad, Talal Halawani, Hanan, M Mehdar, Khlood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5089
container_issue 3
container_start_page 5075
container_title Computers, materials & continua
container_volume 73
creator A Asiri, Abdullah
Badshah, Akhtar
Muhammad, Fazal
A Alshamrani, Hassan
Ullah, Khalil
A Alshamrani, Khalaf
Alqhtani, Samar
Irfan, Muhammad
Talal Halawani, Hanan
M Mehdar, Khlood
description Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response to audiovisual stimuli for the mentioned emotions. Using a bandpass filter with a bandwidth of 1–100 Hz, recorded raw EEG signals are preprocessed. The preprocessed signals then further analyzed and twelve selected features in different domains are extracted. The Random forest (RF) and multilayer perceptron (MLP) algorithms are then used for the classification of the emotions through extracted features. The proposed audiovisual stimuli based EEG emotion classification system shows an average classification accuracy of 80% and 88% using MLP and RF classifiers respectively on hybrid features for experimental signals of different subjects. The proposed model outperforms in terms of cost and accuracy.
doi_str_mv 10.32604/cmc.2022.031156
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696965614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696965614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-ab2413c6fc7db362ea947471d97f399350529d08a5801ce93e3364ab85ae4e883</originalsourceid><addsrcrecordid>eNpNkD1rwzAQhkVpoWnavaOgs11JJ8nWGILzAYEObWZxkeWi4I_UsgP993WaDuUd7j14uIOHkGfOUhCayVfXuFQwIVIGnCt9Q2ZcSZ0IIfTtv35PHmI8MgYaDJuR1WZssKVF0w2hayNd1hhjqILDy073MbSftCjW9ByQLsYydOcQR6zp-xCasQ4U25Iuto_krsI6-qe_OSf7VfGx3CS7t_V2udglDjgMCR6E5OB05bLyAFp4NDKTGS9NVoExoJgSpmQ5qpxx5w14AC3xkCv00uc5zMnL9e6p775GHwd77Ma-nV5aoc0UpbmcKHalXN_F2PvKnvrQYP9tObO_tuxky15s2ast-AGHjVuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696965614</pqid></control><display><type>article</type><title>Human Emotions Classification Using EEG via Audiovisual Stimuli and AI</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>A Asiri, Abdullah ; Badshah, Akhtar ; Muhammad, Fazal ; A Alshamrani, Hassan ; Ullah, Khalil ; A Alshamrani, Khalaf ; Alqhtani, Samar ; Irfan, Muhammad ; Talal Halawani, Hanan ; M Mehdar, Khlood</creator><creatorcontrib>A Asiri, Abdullah ; Badshah, Akhtar ; Muhammad, Fazal ; A Alshamrani, Hassan ; Ullah, Khalil ; A Alshamrani, Khalaf ; Alqhtani, Samar ; Irfan, Muhammad ; Talal Halawani, Hanan ; M Mehdar, Khlood</creatorcontrib><description>Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response to audiovisual stimuli for the mentioned emotions. Using a bandpass filter with a bandwidth of 1–100 Hz, recorded raw EEG signals are preprocessed. The preprocessed signals then further analyzed and twelve selected features in different domains are extracted. The Random forest (RF) and multilayer perceptron (MLP) algorithms are then used for the classification of the emotions through extracted features. The proposed audiovisual stimuli based EEG emotion classification system shows an average classification accuracy of 80% and 88% using MLP and RF classifiers respectively on hybrid features for experimental signals of different subjects. The proposed model outperforms in terms of cost and accuracy.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2022.031156</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Bandpass filters ; Brain ; Classification ; Electroencephalography ; Emotions ; Feature extraction ; Medical imaging ; Multilayer perceptrons ; Signal processing ; Stimuli</subject><ispartof>Computers, materials &amp; continua, 2022, Vol.73 (3), p.5075-5089</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-ab2413c6fc7db362ea947471d97f399350529d08a5801ce93e3364ab85ae4e883</citedby><cites>FETCH-LOGICAL-c313t-ab2413c6fc7db362ea947471d97f399350529d08a5801ce93e3364ab85ae4e883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>A Asiri, Abdullah</creatorcontrib><creatorcontrib>Badshah, Akhtar</creatorcontrib><creatorcontrib>Muhammad, Fazal</creatorcontrib><creatorcontrib>A Alshamrani, Hassan</creatorcontrib><creatorcontrib>Ullah, Khalil</creatorcontrib><creatorcontrib>A Alshamrani, Khalaf</creatorcontrib><creatorcontrib>Alqhtani, Samar</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Talal Halawani, Hanan</creatorcontrib><creatorcontrib>M Mehdar, Khlood</creatorcontrib><title>Human Emotions Classification Using EEG via Audiovisual Stimuli and AI</title><title>Computers, materials &amp; continua</title><description>Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response to audiovisual stimuli for the mentioned emotions. Using a bandpass filter with a bandwidth of 1–100 Hz, recorded raw EEG signals are preprocessed. The preprocessed signals then further analyzed and twelve selected features in different domains are extracted. The Random forest (RF) and multilayer perceptron (MLP) algorithms are then used for the classification of the emotions through extracted features. The proposed audiovisual stimuli based EEG emotion classification system shows an average classification accuracy of 80% and 88% using MLP and RF classifiers respectively on hybrid features for experimental signals of different subjects. The proposed model outperforms in terms of cost and accuracy.</description><subject>Algorithms</subject><subject>Bandpass filters</subject><subject>Brain</subject><subject>Classification</subject><subject>Electroencephalography</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Medical imaging</subject><subject>Multilayer perceptrons</subject><subject>Signal processing</subject><subject>Stimuli</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkD1rwzAQhkVpoWnavaOgs11JJ8nWGILzAYEObWZxkeWi4I_UsgP993WaDuUd7j14uIOHkGfOUhCayVfXuFQwIVIGnCt9Q2ZcSZ0IIfTtv35PHmI8MgYaDJuR1WZssKVF0w2hayNd1hhjqILDy073MbSftCjW9ByQLsYydOcQR6zp-xCasQ4U25Iuto_krsI6-qe_OSf7VfGx3CS7t_V2udglDjgMCR6E5OB05bLyAFp4NDKTGS9NVoExoJgSpmQ5qpxx5w14AC3xkCv00uc5zMnL9e6p775GHwd77Ma-nV5aoc0UpbmcKHalXN_F2PvKnvrQYP9tObO_tuxky15s2ast-AGHjVuM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>A Asiri, Abdullah</creator><creator>Badshah, Akhtar</creator><creator>Muhammad, Fazal</creator><creator>A Alshamrani, Hassan</creator><creator>Ullah, Khalil</creator><creator>A Alshamrani, Khalaf</creator><creator>Alqhtani, Samar</creator><creator>Irfan, Muhammad</creator><creator>Talal Halawani, Hanan</creator><creator>M Mehdar, Khlood</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Human Emotions Classification Using EEG via Audiovisual Stimuli and AI</title><author>A Asiri, Abdullah ; Badshah, Akhtar ; Muhammad, Fazal ; A Alshamrani, Hassan ; Ullah, Khalil ; A Alshamrani, Khalaf ; Alqhtani, Samar ; Irfan, Muhammad ; Talal Halawani, Hanan ; M Mehdar, Khlood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-ab2413c6fc7db362ea947471d97f399350529d08a5801ce93e3364ab85ae4e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bandpass filters</topic><topic>Brain</topic><topic>Classification</topic><topic>Electroencephalography</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Medical imaging</topic><topic>Multilayer perceptrons</topic><topic>Signal processing</topic><topic>Stimuli</topic><toplevel>online_resources</toplevel><creatorcontrib>A Asiri, Abdullah</creatorcontrib><creatorcontrib>Badshah, Akhtar</creatorcontrib><creatorcontrib>Muhammad, Fazal</creatorcontrib><creatorcontrib>A Alshamrani, Hassan</creatorcontrib><creatorcontrib>Ullah, Khalil</creatorcontrib><creatorcontrib>A Alshamrani, Khalaf</creatorcontrib><creatorcontrib>Alqhtani, Samar</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Talal Halawani, Hanan</creatorcontrib><creatorcontrib>M Mehdar, Khlood</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A Asiri, Abdullah</au><au>Badshah, Akhtar</au><au>Muhammad, Fazal</au><au>A Alshamrani, Hassan</au><au>Ullah, Khalil</au><au>A Alshamrani, Khalaf</au><au>Alqhtani, Samar</au><au>Irfan, Muhammad</au><au>Talal Halawani, Hanan</au><au>M Mehdar, Khlood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Emotions Classification Using EEG via Audiovisual Stimuli and AI</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2022</date><risdate>2022</risdate><volume>73</volume><issue>3</issue><spage>5075</spage><epage>5089</epage><pages>5075-5089</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response to audiovisual stimuli for the mentioned emotions. Using a bandpass filter with a bandwidth of 1–100 Hz, recorded raw EEG signals are preprocessed. The preprocessed signals then further analyzed and twelve selected features in different domains are extracted. The Random forest (RF) and multilayer perceptron (MLP) algorithms are then used for the classification of the emotions through extracted features. The proposed audiovisual stimuli based EEG emotion classification system shows an average classification accuracy of 80% and 88% using MLP and RF classifiers respectively on hybrid features for experimental signals of different subjects. The proposed model outperforms in terms of cost and accuracy.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2022.031156</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2226
ispartof Computers, materials & continua, 2022, Vol.73 (3), p.5075-5089
issn 1546-2226
1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2696965614
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Bandpass filters
Brain
Classification
Electroencephalography
Emotions
Feature extraction
Medical imaging
Multilayer perceptrons
Signal processing
Stimuli
title Human Emotions Classification Using EEG via Audiovisual Stimuli and AI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Emotions%20Classification%20Using%20EEG%20via%20Audiovisual%20Stimuli%20and%20AI&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=A%20Asiri,%20Abdullah&rft.date=2022&rft.volume=73&rft.issue=3&rft.spage=5075&rft.epage=5089&rft.pages=5075-5089&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2022.031156&rft_dat=%3Cproquest_cross%3E2696965614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696965614&rft_id=info:pmid/&rfr_iscdi=true