Human Emotions Classification Using EEG via Audiovisual Stimuli and AI
Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference o...
Gespeichert in:
Veröffentlicht in: | Computers, materials & continua materials & continua, 2022, Vol.73 (3), p.5075-5089 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5089 |
---|---|
container_issue | 3 |
container_start_page | 5075 |
container_title | Computers, materials & continua |
container_volume | 73 |
creator | A Asiri, Abdullah Badshah, Akhtar Muhammad, Fazal A Alshamrani, Hassan Ullah, Khalil A Alshamrani, Khalaf Alqhtani, Samar Irfan, Muhammad Talal Halawani, Hanan M Mehdar, Khlood |
description | Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response to audiovisual stimuli for the mentioned emotions. Using a bandpass filter with a bandwidth of 1–100 Hz, recorded raw EEG signals are preprocessed. The preprocessed signals then further analyzed and twelve selected features in different domains are extracted. The Random forest (RF) and multilayer perceptron (MLP) algorithms are then used for the classification of the emotions through extracted features. The proposed audiovisual stimuli based EEG emotion classification system shows an average classification accuracy of 80% and 88% using MLP and RF classifiers respectively on hybrid features for experimental signals of different subjects. The proposed model outperforms in terms of cost and accuracy. |
doi_str_mv | 10.32604/cmc.2022.031156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696965614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696965614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-ab2413c6fc7db362ea947471d97f399350529d08a5801ce93e3364ab85ae4e883</originalsourceid><addsrcrecordid>eNpNkD1rwzAQhkVpoWnavaOgs11JJ8nWGILzAYEObWZxkeWi4I_UsgP993WaDuUd7j14uIOHkGfOUhCayVfXuFQwIVIGnCt9Q2ZcSZ0IIfTtv35PHmI8MgYaDJuR1WZssKVF0w2hayNd1hhjqILDy073MbSftCjW9ByQLsYydOcQR6zp-xCasQ4U25Iuto_krsI6-qe_OSf7VfGx3CS7t_V2udglDjgMCR6E5OB05bLyAFp4NDKTGS9NVoExoJgSpmQ5qpxx5w14AC3xkCv00uc5zMnL9e6p775GHwd77Ma-nV5aoc0UpbmcKHalXN_F2PvKnvrQYP9tObO_tuxky15s2ast-AGHjVuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696965614</pqid></control><display><type>article</type><title>Human Emotions Classification Using EEG via Audiovisual Stimuli and AI</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>A Asiri, Abdullah ; Badshah, Akhtar ; Muhammad, Fazal ; A Alshamrani, Hassan ; Ullah, Khalil ; A Alshamrani, Khalaf ; Alqhtani, Samar ; Irfan, Muhammad ; Talal Halawani, Hanan ; M Mehdar, Khlood</creator><creatorcontrib>A Asiri, Abdullah ; Badshah, Akhtar ; Muhammad, Fazal ; A Alshamrani, Hassan ; Ullah, Khalil ; A Alshamrani, Khalaf ; Alqhtani, Samar ; Irfan, Muhammad ; Talal Halawani, Hanan ; M Mehdar, Khlood</creatorcontrib><description>Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response to audiovisual stimuli for the mentioned emotions. Using a bandpass filter with a bandwidth of 1–100 Hz, recorded raw EEG signals are preprocessed. The preprocessed signals then further analyzed and twelve selected features in different domains are extracted. The Random forest (RF) and multilayer perceptron (MLP) algorithms are then used for the classification of the emotions through extracted features. The proposed audiovisual stimuli based EEG emotion classification system shows an average classification accuracy of 80% and 88% using MLP and RF classifiers respectively on hybrid features for experimental signals of different subjects. The proposed model outperforms in terms of cost and accuracy.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2022.031156</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Bandpass filters ; Brain ; Classification ; Electroencephalography ; Emotions ; Feature extraction ; Medical imaging ; Multilayer perceptrons ; Signal processing ; Stimuli</subject><ispartof>Computers, materials & continua, 2022, Vol.73 (3), p.5075-5089</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-ab2413c6fc7db362ea947471d97f399350529d08a5801ce93e3364ab85ae4e883</citedby><cites>FETCH-LOGICAL-c313t-ab2413c6fc7db362ea947471d97f399350529d08a5801ce93e3364ab85ae4e883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>A Asiri, Abdullah</creatorcontrib><creatorcontrib>Badshah, Akhtar</creatorcontrib><creatorcontrib>Muhammad, Fazal</creatorcontrib><creatorcontrib>A Alshamrani, Hassan</creatorcontrib><creatorcontrib>Ullah, Khalil</creatorcontrib><creatorcontrib>A Alshamrani, Khalaf</creatorcontrib><creatorcontrib>Alqhtani, Samar</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Talal Halawani, Hanan</creatorcontrib><creatorcontrib>M Mehdar, Khlood</creatorcontrib><title>Human Emotions Classification Using EEG via Audiovisual Stimuli and AI</title><title>Computers, materials & continua</title><description>Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response to audiovisual stimuli for the mentioned emotions. Using a bandpass filter with a bandwidth of 1–100 Hz, recorded raw EEG signals are preprocessed. The preprocessed signals then further analyzed and twelve selected features in different domains are extracted. The Random forest (RF) and multilayer perceptron (MLP) algorithms are then used for the classification of the emotions through extracted features. The proposed audiovisual stimuli based EEG emotion classification system shows an average classification accuracy of 80% and 88% using MLP and RF classifiers respectively on hybrid features for experimental signals of different subjects. The proposed model outperforms in terms of cost and accuracy.</description><subject>Algorithms</subject><subject>Bandpass filters</subject><subject>Brain</subject><subject>Classification</subject><subject>Electroencephalography</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Medical imaging</subject><subject>Multilayer perceptrons</subject><subject>Signal processing</subject><subject>Stimuli</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkD1rwzAQhkVpoWnavaOgs11JJ8nWGILzAYEObWZxkeWi4I_UsgP993WaDuUd7j14uIOHkGfOUhCayVfXuFQwIVIGnCt9Q2ZcSZ0IIfTtv35PHmI8MgYaDJuR1WZssKVF0w2hayNd1hhjqILDy073MbSftCjW9ByQLsYydOcQR6zp-xCasQ4U25Iuto_krsI6-qe_OSf7VfGx3CS7t_V2udglDjgMCR6E5OB05bLyAFp4NDKTGS9NVoExoJgSpmQ5qpxx5w14AC3xkCv00uc5zMnL9e6p775GHwd77Ma-nV5aoc0UpbmcKHalXN_F2PvKnvrQYP9tObO_tuxky15s2ast-AGHjVuM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>A Asiri, Abdullah</creator><creator>Badshah, Akhtar</creator><creator>Muhammad, Fazal</creator><creator>A Alshamrani, Hassan</creator><creator>Ullah, Khalil</creator><creator>A Alshamrani, Khalaf</creator><creator>Alqhtani, Samar</creator><creator>Irfan, Muhammad</creator><creator>Talal Halawani, Hanan</creator><creator>M Mehdar, Khlood</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Human Emotions Classification Using EEG via Audiovisual Stimuli and AI</title><author>A Asiri, Abdullah ; Badshah, Akhtar ; Muhammad, Fazal ; A Alshamrani, Hassan ; Ullah, Khalil ; A Alshamrani, Khalaf ; Alqhtani, Samar ; Irfan, Muhammad ; Talal Halawani, Hanan ; M Mehdar, Khlood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-ab2413c6fc7db362ea947471d97f399350529d08a5801ce93e3364ab85ae4e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bandpass filters</topic><topic>Brain</topic><topic>Classification</topic><topic>Electroencephalography</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Medical imaging</topic><topic>Multilayer perceptrons</topic><topic>Signal processing</topic><topic>Stimuli</topic><toplevel>online_resources</toplevel><creatorcontrib>A Asiri, Abdullah</creatorcontrib><creatorcontrib>Badshah, Akhtar</creatorcontrib><creatorcontrib>Muhammad, Fazal</creatorcontrib><creatorcontrib>A Alshamrani, Hassan</creatorcontrib><creatorcontrib>Ullah, Khalil</creatorcontrib><creatorcontrib>A Alshamrani, Khalaf</creatorcontrib><creatorcontrib>Alqhtani, Samar</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Talal Halawani, Hanan</creatorcontrib><creatorcontrib>M Mehdar, Khlood</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials & continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>A Asiri, Abdullah</au><au>Badshah, Akhtar</au><au>Muhammad, Fazal</au><au>A Alshamrani, Hassan</au><au>Ullah, Khalil</au><au>A Alshamrani, Khalaf</au><au>Alqhtani, Samar</au><au>Irfan, Muhammad</au><au>Talal Halawani, Hanan</au><au>M Mehdar, Khlood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Emotions Classification Using EEG via Audiovisual Stimuli and AI</atitle><jtitle>Computers, materials & continua</jtitle><date>2022</date><risdate>2022</risdate><volume>73</volume><issue>3</issue><spage>5075</spage><epage>5089</epage><pages>5075-5089</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>Electroencephalogram (EEG) is a medical imaging technology that can measure the electrical activity of the scalp produced by the brain, measured and recorded chronologically the surface of the scalp from the brain. The recorded signals from the brain are rich with useful information. The inference of this useful information is a challenging task. This paper aims to process the EEG signals for the recognition of human emotions specifically happiness, anger, fear, sadness, and surprise in response to audiovisual stimuli. The EEG signals are recorded by placing neurosky mindwave headset on the subject’s scalp, in response to audiovisual stimuli for the mentioned emotions. Using a bandpass filter with a bandwidth of 1–100 Hz, recorded raw EEG signals are preprocessed. The preprocessed signals then further analyzed and twelve selected features in different domains are extracted. The Random forest (RF) and multilayer perceptron (MLP) algorithms are then used for the classification of the emotions through extracted features. The proposed audiovisual stimuli based EEG emotion classification system shows an average classification accuracy of 80% and 88% using MLP and RF classifiers respectively on hybrid features for experimental signals of different subjects. The proposed model outperforms in terms of cost and accuracy.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2022.031156</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2226 |
ispartof | Computers, materials & continua, 2022, Vol.73 (3), p.5075-5089 |
issn | 1546-2226 1546-2218 1546-2226 |
language | eng |
recordid | cdi_proquest_journals_2696965614 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Bandpass filters Brain Classification Electroencephalography Emotions Feature extraction Medical imaging Multilayer perceptrons Signal processing Stimuli |
title | Human Emotions Classification Using EEG via Audiovisual Stimuli and AI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Emotions%20Classification%20Using%20EEG%20via%20Audiovisual%20Stimuli%20and%20AI&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=A%20Asiri,%20Abdullah&rft.date=2022&rft.volume=73&rft.issue=3&rft.spage=5075&rft.epage=5089&rft.pages=5075-5089&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2022.031156&rft_dat=%3Cproquest_cross%3E2696965614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696965614&rft_id=info:pmid/&rfr_iscdi=true |