Understanding the Site‐Selective Electrocatalytic Co‐Reduction Mechanism for Green Urea Synthesis Using Copper Phthalocyanine Nanotubes

Green synthesis of urea under ambient conditions by electrochemical co‐reduction of N2 and CO2 gases using effective electrocatalyst essentially pushes the conventional two steps (N2 + H2 = NH3 and NH3 + CO2 = CO(NH2)2) industrial process at high temperature and high pressure, to the brink. The sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-08, Vol.32 (31), p.n/a
Hauptverfasser: Mukherjee, Jit, Paul, Sourav, Adalder, Ashadul, Kapse, Samadhan, Thapa, Ranjit, Mandal, Sumit, Ghorai, Biswajit, Sarkar, Sougata, Ghorai, Uttam Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced functional materials
container_volume 32
creator Mukherjee, Jit
Paul, Sourav
Adalder, Ashadul
Kapse, Samadhan
Thapa, Ranjit
Mandal, Sumit
Ghorai, Biswajit
Sarkar, Sougata
Ghorai, Uttam Kumar
description Green synthesis of urea under ambient conditions by electrochemical co‐reduction of N2 and CO2 gases using effective electrocatalyst essentially pushes the conventional two steps (N2 + H2 = NH3 and NH3 + CO2 = CO(NH2)2) industrial process at high temperature and high pressure, to the brink. The single step electrochemical green urea synthesis process has hit a roadblock due to the lack of efficient and economically viable electrocatalyst with multiple active sites for dual reduction of N2 and CO2 gas molecules to urea. Herein, copper phthalocyanine nanotubes (CuPc NTs) having multiple active sites (such as metal center, Pyrrolic‐N3, Pyrrolic‐N2, and Pyridinic‐N1) as an efficient electrocatalyst which exhibits urea yield of 143.47 µg h–1 mg–1cat and faradaic efficiency of 12.99% at –0.6 V versus reversible hydrogen electrode by co‐reduction of N2 and CO2 are reported. Theoretical calculation suggests that Pyridinic‐N1 and Cu centers are responsible to form CN bonds for urea by co‐reduction of N2 to NN* and CO2 to *CO, respectively. This study provides the new mechanistic insight about the successful electro‐reduction of dual gases (N2 and CO2) in a single molecule as well as rational design of efficient noble metal‐free electrocatalyst for the synthesis of green urea. Unlike the extravagant industrial process, electrochemical urea synthesis is a green propitious alternate route to convert abundant nitrogen and green‐house CO2 to urea in a single step with yield rate of 143.47 µg h–1 mg–1cat using copper phthalocyanine nanotubes at standard temperature and pressure. This study provides new mechanistic insight about successful co‐reduction of N2 and CO2 in a single entity.
doi_str_mv 10.1002/adfm.202200882
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696947243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696947243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-349be0c0cbd8d40a210594e8a1d207f2ec4644af1a7bb102bbdecd6c7bf750753</originalsourceid><addsrcrecordid>eNqFkD9PwzAUxCMEEuXPymyJueXZceNkRKUtSBQQpRJb5NgvNCi1i-2CsrGz8Bn5JCQqgpHpnXT3uyddFJ1QGFAAdiZ1uRowYAwgTdlO1KMJTfoxsHT3V9PH_ejA-2cAKkTMe9HHwmh0PkijK_NEwhLJvAr49f45xxpVqF6RjDvhrJJB1k2oFBnZ1r9HvWl9a8gM1VKayq9IaR2ZOkRDFg4lmTemLfSVJwvftY_seo2O3C3DUtZWNS1kkNxIY8OmQH8U7ZWy9nj8cw-jxWT8MLrsX99Or0bn130VU8H6Mc8KBAWq0KnmIBmFYcYxlVQzECVDxRPOZUmlKAoKrCg0Kp0oUZRiCGIYH0an2961sy8b9CF_thtn2pc5S7Ik44LxuE0NtinlrPcOy3ztqpV0TU4h7wbPu8Hz38FbINsCb1WNzT_p_PxiMvtjvwEllont</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696947243</pqid></control><display><type>article</type><title>Understanding the Site‐Selective Electrocatalytic Co‐Reduction Mechanism for Green Urea Synthesis Using Copper Phthalocyanine Nanotubes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mukherjee, Jit ; Paul, Sourav ; Adalder, Ashadul ; Kapse, Samadhan ; Thapa, Ranjit ; Mandal, Sumit ; Ghorai, Biswajit ; Sarkar, Sougata ; Ghorai, Uttam Kumar</creator><creatorcontrib>Mukherjee, Jit ; Paul, Sourav ; Adalder, Ashadul ; Kapse, Samadhan ; Thapa, Ranjit ; Mandal, Sumit ; Ghorai, Biswajit ; Sarkar, Sougata ; Ghorai, Uttam Kumar</creatorcontrib><description>Green synthesis of urea under ambient conditions by electrochemical co‐reduction of N2 and CO2 gases using effective electrocatalyst essentially pushes the conventional two steps (N2 + H2 = NH3 and NH3 + CO2 = CO(NH2)2) industrial process at high temperature and high pressure, to the brink. The single step electrochemical green urea synthesis process has hit a roadblock due to the lack of efficient and economically viable electrocatalyst with multiple active sites for dual reduction of N2 and CO2 gas molecules to urea. Herein, copper phthalocyanine nanotubes (CuPc NTs) having multiple active sites (such as metal center, Pyrrolic‐N3, Pyrrolic‐N2, and Pyridinic‐N1) as an efficient electrocatalyst which exhibits urea yield of 143.47 µg h–1 mg–1cat and faradaic efficiency of 12.99% at –0.6 V versus reversible hydrogen electrode by co‐reduction of N2 and CO2 are reported. Theoretical calculation suggests that Pyridinic‐N1 and Cu centers are responsible to form CN bonds for urea by co‐reduction of N2 to NN* and CO2 to *CO, respectively. This study provides the new mechanistic insight about the successful electro‐reduction of dual gases (N2 and CO2) in a single molecule as well as rational design of efficient noble metal‐free electrocatalyst for the synthesis of green urea. Unlike the extravagant industrial process, electrochemical urea synthesis is a green propitious alternate route to convert abundant nitrogen and green‐house CO2 to urea in a single step with yield rate of 143.47 µg h–1 mg–1cat using copper phthalocyanine nanotubes at standard temperature and pressure. This study provides new mechanistic insight about successful co‐reduction of N2 and CO2 in a single entity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202200882</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Carbon dioxide ; Copper ; copper phthalocyanine ; dual active sites ; Electrocatalysts ; electrochemical co‐reduction ; green urea ; High temperature ; Materials science ; Metal phthalocyanines ; Nanotubes ; Noble metals ; Synthesis ; urea synthesis ; Ureas</subject><ispartof>Advanced functional materials, 2022-08, Vol.32 (31), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-349be0c0cbd8d40a210594e8a1d207f2ec4644af1a7bb102bbdecd6c7bf750753</citedby><cites>FETCH-LOGICAL-c3172-349be0c0cbd8d40a210594e8a1d207f2ec4644af1a7bb102bbdecd6c7bf750753</cites><orcidid>0000-0003-0537-598X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202200882$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202200882$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Mukherjee, Jit</creatorcontrib><creatorcontrib>Paul, Sourav</creatorcontrib><creatorcontrib>Adalder, Ashadul</creatorcontrib><creatorcontrib>Kapse, Samadhan</creatorcontrib><creatorcontrib>Thapa, Ranjit</creatorcontrib><creatorcontrib>Mandal, Sumit</creatorcontrib><creatorcontrib>Ghorai, Biswajit</creatorcontrib><creatorcontrib>Sarkar, Sougata</creatorcontrib><creatorcontrib>Ghorai, Uttam Kumar</creatorcontrib><title>Understanding the Site‐Selective Electrocatalytic Co‐Reduction Mechanism for Green Urea Synthesis Using Copper Phthalocyanine Nanotubes</title><title>Advanced functional materials</title><description>Green synthesis of urea under ambient conditions by electrochemical co‐reduction of N2 and CO2 gases using effective electrocatalyst essentially pushes the conventional two steps (N2 + H2 = NH3 and NH3 + CO2 = CO(NH2)2) industrial process at high temperature and high pressure, to the brink. The single step electrochemical green urea synthesis process has hit a roadblock due to the lack of efficient and economically viable electrocatalyst with multiple active sites for dual reduction of N2 and CO2 gas molecules to urea. Herein, copper phthalocyanine nanotubes (CuPc NTs) having multiple active sites (such as metal center, Pyrrolic‐N3, Pyrrolic‐N2, and Pyridinic‐N1) as an efficient electrocatalyst which exhibits urea yield of 143.47 µg h–1 mg–1cat and faradaic efficiency of 12.99% at –0.6 V versus reversible hydrogen electrode by co‐reduction of N2 and CO2 are reported. Theoretical calculation suggests that Pyridinic‐N1 and Cu centers are responsible to form CN bonds for urea by co‐reduction of N2 to NN* and CO2 to *CO, respectively. This study provides the new mechanistic insight about the successful electro‐reduction of dual gases (N2 and CO2) in a single molecule as well as rational design of efficient noble metal‐free electrocatalyst for the synthesis of green urea. Unlike the extravagant industrial process, electrochemical urea synthesis is a green propitious alternate route to convert abundant nitrogen and green‐house CO2 to urea in a single step with yield rate of 143.47 µg h–1 mg–1cat using copper phthalocyanine nanotubes at standard temperature and pressure. This study provides new mechanistic insight about successful co‐reduction of N2 and CO2 in a single entity.</description><subject>Ammonia</subject><subject>Carbon dioxide</subject><subject>Copper</subject><subject>copper phthalocyanine</subject><subject>dual active sites</subject><subject>Electrocatalysts</subject><subject>electrochemical co‐reduction</subject><subject>green urea</subject><subject>High temperature</subject><subject>Materials science</subject><subject>Metal phthalocyanines</subject><subject>Nanotubes</subject><subject>Noble metals</subject><subject>Synthesis</subject><subject>urea synthesis</subject><subject>Ureas</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAUxCMEEuXPymyJueXZceNkRKUtSBQQpRJb5NgvNCi1i-2CsrGz8Bn5JCQqgpHpnXT3uyddFJ1QGFAAdiZ1uRowYAwgTdlO1KMJTfoxsHT3V9PH_ejA-2cAKkTMe9HHwmh0PkijK_NEwhLJvAr49f45xxpVqF6RjDvhrJJB1k2oFBnZ1r9HvWl9a8gM1VKayq9IaR2ZOkRDFg4lmTemLfSVJwvftY_seo2O3C3DUtZWNS1kkNxIY8OmQH8U7ZWy9nj8cw-jxWT8MLrsX99Or0bn130VU8H6Mc8KBAWq0KnmIBmFYcYxlVQzECVDxRPOZUmlKAoKrCg0Kp0oUZRiCGIYH0an2961sy8b9CF_thtn2pc5S7Ik44LxuE0NtinlrPcOy3ztqpV0TU4h7wbPu8Hz38FbINsCb1WNzT_p_PxiMvtjvwEllont</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Mukherjee, Jit</creator><creator>Paul, Sourav</creator><creator>Adalder, Ashadul</creator><creator>Kapse, Samadhan</creator><creator>Thapa, Ranjit</creator><creator>Mandal, Sumit</creator><creator>Ghorai, Biswajit</creator><creator>Sarkar, Sougata</creator><creator>Ghorai, Uttam Kumar</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0537-598X</orcidid></search><sort><creationdate>20220801</creationdate><title>Understanding the Site‐Selective Electrocatalytic Co‐Reduction Mechanism for Green Urea Synthesis Using Copper Phthalocyanine Nanotubes</title><author>Mukherjee, Jit ; Paul, Sourav ; Adalder, Ashadul ; Kapse, Samadhan ; Thapa, Ranjit ; Mandal, Sumit ; Ghorai, Biswajit ; Sarkar, Sougata ; Ghorai, Uttam Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-349be0c0cbd8d40a210594e8a1d207f2ec4644af1a7bb102bbdecd6c7bf750753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Carbon dioxide</topic><topic>Copper</topic><topic>copper phthalocyanine</topic><topic>dual active sites</topic><topic>Electrocatalysts</topic><topic>electrochemical co‐reduction</topic><topic>green urea</topic><topic>High temperature</topic><topic>Materials science</topic><topic>Metal phthalocyanines</topic><topic>Nanotubes</topic><topic>Noble metals</topic><topic>Synthesis</topic><topic>urea synthesis</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Jit</creatorcontrib><creatorcontrib>Paul, Sourav</creatorcontrib><creatorcontrib>Adalder, Ashadul</creatorcontrib><creatorcontrib>Kapse, Samadhan</creatorcontrib><creatorcontrib>Thapa, Ranjit</creatorcontrib><creatorcontrib>Mandal, Sumit</creatorcontrib><creatorcontrib>Ghorai, Biswajit</creatorcontrib><creatorcontrib>Sarkar, Sougata</creatorcontrib><creatorcontrib>Ghorai, Uttam Kumar</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Jit</au><au>Paul, Sourav</au><au>Adalder, Ashadul</au><au>Kapse, Samadhan</au><au>Thapa, Ranjit</au><au>Mandal, Sumit</au><au>Ghorai, Biswajit</au><au>Sarkar, Sougata</au><au>Ghorai, Uttam Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Site‐Selective Electrocatalytic Co‐Reduction Mechanism for Green Urea Synthesis Using Copper Phthalocyanine Nanotubes</atitle><jtitle>Advanced functional materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>32</volume><issue>31</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Green synthesis of urea under ambient conditions by electrochemical co‐reduction of N2 and CO2 gases using effective electrocatalyst essentially pushes the conventional two steps (N2 + H2 = NH3 and NH3 + CO2 = CO(NH2)2) industrial process at high temperature and high pressure, to the brink. The single step electrochemical green urea synthesis process has hit a roadblock due to the lack of efficient and economically viable electrocatalyst with multiple active sites for dual reduction of N2 and CO2 gas molecules to urea. Herein, copper phthalocyanine nanotubes (CuPc NTs) having multiple active sites (such as metal center, Pyrrolic‐N3, Pyrrolic‐N2, and Pyridinic‐N1) as an efficient electrocatalyst which exhibits urea yield of 143.47 µg h–1 mg–1cat and faradaic efficiency of 12.99% at –0.6 V versus reversible hydrogen electrode by co‐reduction of N2 and CO2 are reported. Theoretical calculation suggests that Pyridinic‐N1 and Cu centers are responsible to form CN bonds for urea by co‐reduction of N2 to NN* and CO2 to *CO, respectively. This study provides the new mechanistic insight about the successful electro‐reduction of dual gases (N2 and CO2) in a single molecule as well as rational design of efficient noble metal‐free electrocatalyst for the synthesis of green urea. Unlike the extravagant industrial process, electrochemical urea synthesis is a green propitious alternate route to convert abundant nitrogen and green‐house CO2 to urea in a single step with yield rate of 143.47 µg h–1 mg–1cat using copper phthalocyanine nanotubes at standard temperature and pressure. This study provides new mechanistic insight about successful co‐reduction of N2 and CO2 in a single entity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202200882</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0537-598X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-08, Vol.32 (31), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2696947243
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Carbon dioxide
Copper
copper phthalocyanine
dual active sites
Electrocatalysts
electrochemical co‐reduction
green urea
High temperature
Materials science
Metal phthalocyanines
Nanotubes
Noble metals
Synthesis
urea synthesis
Ureas
title Understanding the Site‐Selective Electrocatalytic Co‐Reduction Mechanism for Green Urea Synthesis Using Copper Phthalocyanine Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Site%E2%80%90Selective%20Electrocatalytic%20Co%E2%80%90Reduction%20Mechanism%20for%20Green%20Urea%20Synthesis%20Using%20Copper%20Phthalocyanine%20Nanotubes&rft.jtitle=Advanced%20functional%20materials&rft.au=Mukherjee,%20Jit&rft.date=2022-08-01&rft.volume=32&rft.issue=31&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202200882&rft_dat=%3Cproquest_cross%3E2696947243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696947243&rft_id=info:pmid/&rfr_iscdi=true