A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization

•Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2022-04, Vol.180, p.243-253
Hauptverfasser: Nogueira, Idelfonso B.R., Dias, Rafael O.M., Rebello, Carine M., Costa, Erbet A., Santana, Vinicius V., Rodrigues, Alírio E., Ferreira, Alexandre, Ribeiro, Ana M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue
container_start_page 243
container_title Chemical engineering research & design
container_volume 180
creator Nogueira, Idelfonso B.R.
Dias, Rafael O.M.
Rebello, Carine M.
Costa, Erbet A.
Santana, Vinicius V.
Rodrigues, Alírio E.
Ferreira, Alexandre
Ribeiro, Ana M.
description •Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a map of the feasible operating regions. The present work proposes a novel strategy for simultaneous material screening and process optimization. This strategy is based on the capacities of deep neural networks to extract knowledge of a database. It makes use of a nested optimization loop which is designed to couple the process and material points of view simultaneously. The optimization problem results are analyzed by a Fisher–Snedecor test, designed to assess the optimal points uncertainties, building the process’s feasible operating regions. This methodology describes the processes’ possible operating points that lead to optimal conditions, considering the material type as a decision variable. The methodology shows that this complex problem can be better understood when the uncertainties are taken into consideration. On the other hand, the proposed optimization problem can provide a way to address the issues related to optimizing adsorption processes considering the material screening.
doi_str_mv 10.1016/j.cherd.2022.02.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696891398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876222000673</els_id><sourcerecordid>2696891398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c3c4568152fc259d8b76f0fd20ad63c2c3817e651628b97581f666c4c13ed09d3</originalsourceid><addsrcrecordid>eNp9kUtrGzEQx0VIIM7jE_Qi6NmuHl6t9tCDCX1BoJfkLGRp5MjdlbbSbkrznfIdO7Z7ySUwaGDm_5uHhpAPnK044-rTfuWeoPiVYEKsGBqXZ2TB2_V6KRslz8mCCSWXulXiklzVumeMYVYvyOuGpvwMPU1QJ_C0z3mkeZziEF_sFHOiY8nbHga6tRXzGPAAI8rnYg_U9CeXX5Xa5GkAWyNqkYdyggvs0FVkQkzxGAq50BqHuZ9sgjxXOtgJSsRi1RWAFNPuWA37Oqj1zTA35CLYvsLtf39NHr9-ebj7vrz_-e3H3eZ-6WSrJnzdulGaNyI40XReb1sVWPCCWa-kE05q3oJquBJ627WN5kEp5daOS_Cs8_KafDzVxSF-z_gzZp_nkrClEapTuuOy06iSJ5UrudYCwYwlDrb8NZyZw13M3hzvYg53MQyNS6Q-nyjABZ4jFFNdhOTAxwJuMj7Hd_l_rv6cSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696891398</pqid></control><display><type>article</type><title>A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nogueira, Idelfonso B.R. ; Dias, Rafael O.M. ; Rebello, Carine M. ; Costa, Erbet A. ; Santana, Vinicius V. ; Rodrigues, Alírio E. ; Ferreira, Alexandre ; Ribeiro, Ana M.</creator><creatorcontrib>Nogueira, Idelfonso B.R. ; Dias, Rafael O.M. ; Rebello, Carine M. ; Costa, Erbet A. ; Santana, Vinicius V. ; Rodrigues, Alírio E. ; Ferreira, Alexandre ; Ribeiro, Ana M.</creatorcontrib><description>•Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a map of the feasible operating regions. The present work proposes a novel strategy for simultaneous material screening and process optimization. This strategy is based on the capacities of deep neural networks to extract knowledge of a database. It makes use of a nested optimization loop which is designed to couple the process and material points of view simultaneously. The optimization problem results are analyzed by a Fisher–Snedecor test, designed to assess the optimal points uncertainties, building the process’s feasible operating regions. This methodology describes the processes’ possible operating points that lead to optimal conditions, considering the material type as a decision variable. The methodology shows that this complex problem can be better understood when the uncertainties are taken into consideration. On the other hand, the proposed optimization problem can provide a way to address the issues related to optimizing adsorption processes considering the material screening.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2022.02.013</identifier><language>eng</language><publisher>Rugby: Elsevier Ltd</publisher><subject>Adsorption material screening ; Artificial neural networks ; Chemical engineering ; Deep learning ; Materials science ; Nested loops ; Neural networks ; Optimization ; Optimization uncertainty assessment ; Pressure swing adsorption ; Screening ; Uncertainty</subject><ispartof>Chemical engineering research &amp; design, 2022-04, Vol.180, p.243-253</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier Science Ltd. Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c3c4568152fc259d8b76f0fd20ad63c2c3817e651628b97581f666c4c13ed09d3</citedby><cites>FETCH-LOGICAL-c376t-c3c4568152fc259d8b76f0fd20ad63c2c3817e651628b97581f666c4c13ed09d3</cites><orcidid>0000-0003-1397-9628 ; 0000-0002-0963-6449 ; 0000-0003-4269-1420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2022.02.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nogueira, Idelfonso B.R.</creatorcontrib><creatorcontrib>Dias, Rafael O.M.</creatorcontrib><creatorcontrib>Rebello, Carine M.</creatorcontrib><creatorcontrib>Costa, Erbet A.</creatorcontrib><creatorcontrib>Santana, Vinicius V.</creatorcontrib><creatorcontrib>Rodrigues, Alírio E.</creatorcontrib><creatorcontrib>Ferreira, Alexandre</creatorcontrib><creatorcontrib>Ribeiro, Ana M.</creatorcontrib><title>A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization</title><title>Chemical engineering research &amp; design</title><description>•Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a map of the feasible operating regions. The present work proposes a novel strategy for simultaneous material screening and process optimization. This strategy is based on the capacities of deep neural networks to extract knowledge of a database. It makes use of a nested optimization loop which is designed to couple the process and material points of view simultaneously. The optimization problem results are analyzed by a Fisher–Snedecor test, designed to assess the optimal points uncertainties, building the process’s feasible operating regions. This methodology describes the processes’ possible operating points that lead to optimal conditions, considering the material type as a decision variable. The methodology shows that this complex problem can be better understood when the uncertainties are taken into consideration. On the other hand, the proposed optimization problem can provide a way to address the issues related to optimizing adsorption processes considering the material screening.</description><subject>Adsorption material screening</subject><subject>Artificial neural networks</subject><subject>Chemical engineering</subject><subject>Deep learning</subject><subject>Materials science</subject><subject>Nested loops</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization uncertainty assessment</subject><subject>Pressure swing adsorption</subject><subject>Screening</subject><subject>Uncertainty</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrGzEQx0VIIM7jE_Qi6NmuHl6t9tCDCX1BoJfkLGRp5MjdlbbSbkrznfIdO7Z7ySUwaGDm_5uHhpAPnK044-rTfuWeoPiVYEKsGBqXZ2TB2_V6KRslz8mCCSWXulXiklzVumeMYVYvyOuGpvwMPU1QJ_C0z3mkeZziEF_sFHOiY8nbHga6tRXzGPAAI8rnYg_U9CeXX5Xa5GkAWyNqkYdyggvs0FVkQkzxGAq50BqHuZ9sgjxXOtgJSsRi1RWAFNPuWA37Oqj1zTA35CLYvsLtf39NHr9-ebj7vrz_-e3H3eZ-6WSrJnzdulGaNyI40XReb1sVWPCCWa-kE05q3oJquBJ627WN5kEp5daOS_Cs8_KafDzVxSF-z_gzZp_nkrClEapTuuOy06iSJ5UrudYCwYwlDrb8NZyZw13M3hzvYg53MQyNS6Q-nyjABZ4jFFNdhOTAxwJuMj7Hd_l_rv6cSQ</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Nogueira, Idelfonso B.R.</creator><creator>Dias, Rafael O.M.</creator><creator>Rebello, Carine M.</creator><creator>Costa, Erbet A.</creator><creator>Santana, Vinicius V.</creator><creator>Rodrigues, Alírio E.</creator><creator>Ferreira, Alexandre</creator><creator>Ribeiro, Ana M.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1397-9628</orcidid><orcidid>https://orcid.org/0000-0002-0963-6449</orcidid><orcidid>https://orcid.org/0000-0003-4269-1420</orcidid></search><sort><creationdate>202204</creationdate><title>A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization</title><author>Nogueira, Idelfonso B.R. ; Dias, Rafael O.M. ; Rebello, Carine M. ; Costa, Erbet A. ; Santana, Vinicius V. ; Rodrigues, Alírio E. ; Ferreira, Alexandre ; Ribeiro, Ana M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c3c4568152fc259d8b76f0fd20ad63c2c3817e651628b97581f666c4c13ed09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption material screening</topic><topic>Artificial neural networks</topic><topic>Chemical engineering</topic><topic>Deep learning</topic><topic>Materials science</topic><topic>Nested loops</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization uncertainty assessment</topic><topic>Pressure swing adsorption</topic><topic>Screening</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nogueira, Idelfonso B.R.</creatorcontrib><creatorcontrib>Dias, Rafael O.M.</creatorcontrib><creatorcontrib>Rebello, Carine M.</creatorcontrib><creatorcontrib>Costa, Erbet A.</creatorcontrib><creatorcontrib>Santana, Vinicius V.</creatorcontrib><creatorcontrib>Rodrigues, Alírio E.</creatorcontrib><creatorcontrib>Ferreira, Alexandre</creatorcontrib><creatorcontrib>Ribeiro, Ana M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nogueira, Idelfonso B.R.</au><au>Dias, Rafael O.M.</au><au>Rebello, Carine M.</au><au>Costa, Erbet A.</au><au>Santana, Vinicius V.</au><au>Rodrigues, Alírio E.</au><au>Ferreira, Alexandre</au><au>Ribeiro, Ana M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2022-04</date><risdate>2022</risdate><volume>180</volume><spage>243</spage><epage>253</epage><pages>243-253</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>•Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a map of the feasible operating regions. The present work proposes a novel strategy for simultaneous material screening and process optimization. This strategy is based on the capacities of deep neural networks to extract knowledge of a database. It makes use of a nested optimization loop which is designed to couple the process and material points of view simultaneously. The optimization problem results are analyzed by a Fisher–Snedecor test, designed to assess the optimal points uncertainties, building the process’s feasible operating regions. This methodology describes the processes’ possible operating points that lead to optimal conditions, considering the material type as a decision variable. The methodology shows that this complex problem can be better understood when the uncertainties are taken into consideration. On the other hand, the proposed optimization problem can provide a way to address the issues related to optimizing adsorption processes considering the material screening.</abstract><cop>Rugby</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cherd.2022.02.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1397-9628</orcidid><orcidid>https://orcid.org/0000-0002-0963-6449</orcidid><orcidid>https://orcid.org/0000-0003-4269-1420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2022-04, Vol.180, p.243-253
issn 0263-8762
1744-3563
language eng
recordid cdi_proquest_journals_2696891398
source Access via ScienceDirect (Elsevier)
subjects Adsorption material screening
Artificial neural networks
Chemical engineering
Deep learning
Materials science
Nested loops
Neural networks
Optimization
Optimization uncertainty assessment
Pressure swing adsorption
Screening
Uncertainty
title A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20nested%20loop%20optimization%20problem%20based%20on%20deep%20neural%20networks%20and%20feasible%20operation%20regions%20definition%20for%20simultaneous%20material%20screening%20and%20process%20optimization&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Nogueira,%20Idelfonso%20B.R.&rft.date=2022-04&rft.volume=180&rft.spage=243&rft.epage=253&rft.pages=243-253&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2022.02.013&rft_dat=%3Cproquest_cross%3E2696891398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696891398&rft_id=info:pmid/&rft_els_id=S0263876222000673&rfr_iscdi=true