A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization
•Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2022-04, Vol.180, p.243-253 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | |
container_start_page | 243 |
container_title | Chemical engineering research & design |
container_volume | 180 |
creator | Nogueira, Idelfonso B.R. Dias, Rafael O.M. Rebello, Carine M. Costa, Erbet A. Santana, Vinicius V. Rodrigues, Alírio E. Ferreira, Alexandre Ribeiro, Ana M. |
description | •Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a map of the feasible operating regions.
The present work proposes a novel strategy for simultaneous material screening and process optimization. This strategy is based on the capacities of deep neural networks to extract knowledge of a database. It makes use of a nested optimization loop which is designed to couple the process and material points of view simultaneously. The optimization problem results are analyzed by a Fisher–Snedecor test, designed to assess the optimal points uncertainties, building the process’s feasible operating regions. This methodology describes the processes’ possible operating points that lead to optimal conditions, considering the material type as a decision variable. The methodology shows that this complex problem can be better understood when the uncertainties are taken into consideration. On the other hand, the proposed optimization problem can provide a way to address the issues related to optimizing adsorption processes considering the material screening. |
doi_str_mv | 10.1016/j.cherd.2022.02.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696891398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876222000673</els_id><sourcerecordid>2696891398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c3c4568152fc259d8b76f0fd20ad63c2c3817e651628b97581f666c4c13ed09d3</originalsourceid><addsrcrecordid>eNp9kUtrGzEQx0VIIM7jE_Qi6NmuHl6t9tCDCX1BoJfkLGRp5MjdlbbSbkrznfIdO7Z7ySUwaGDm_5uHhpAPnK044-rTfuWeoPiVYEKsGBqXZ2TB2_V6KRslz8mCCSWXulXiklzVumeMYVYvyOuGpvwMPU1QJ_C0z3mkeZziEF_sFHOiY8nbHga6tRXzGPAAI8rnYg_U9CeXX5Xa5GkAWyNqkYdyggvs0FVkQkzxGAq50BqHuZ9sgjxXOtgJSsRi1RWAFNPuWA37Oqj1zTA35CLYvsLtf39NHr9-ebj7vrz_-e3H3eZ-6WSrJnzdulGaNyI40XReb1sVWPCCWa-kE05q3oJquBJ627WN5kEp5daOS_Cs8_KafDzVxSF-z_gzZp_nkrClEapTuuOy06iSJ5UrudYCwYwlDrb8NZyZw13M3hzvYg53MQyNS6Q-nyjABZ4jFFNdhOTAxwJuMj7Hd_l_rv6cSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696891398</pqid></control><display><type>article</type><title>A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nogueira, Idelfonso B.R. ; Dias, Rafael O.M. ; Rebello, Carine M. ; Costa, Erbet A. ; Santana, Vinicius V. ; Rodrigues, Alírio E. ; Ferreira, Alexandre ; Ribeiro, Ana M.</creator><creatorcontrib>Nogueira, Idelfonso B.R. ; Dias, Rafael O.M. ; Rebello, Carine M. ; Costa, Erbet A. ; Santana, Vinicius V. ; Rodrigues, Alírio E. ; Ferreira, Alexandre ; Ribeiro, Ana M.</creatorcontrib><description>•Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a map of the feasible operating regions.
The present work proposes a novel strategy for simultaneous material screening and process optimization. This strategy is based on the capacities of deep neural networks to extract knowledge of a database. It makes use of a nested optimization loop which is designed to couple the process and material points of view simultaneously. The optimization problem results are analyzed by a Fisher–Snedecor test, designed to assess the optimal points uncertainties, building the process’s feasible operating regions. This methodology describes the processes’ possible operating points that lead to optimal conditions, considering the material type as a decision variable. The methodology shows that this complex problem can be better understood when the uncertainties are taken into consideration. On the other hand, the proposed optimization problem can provide a way to address the issues related to optimizing adsorption processes considering the material screening.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2022.02.013</identifier><language>eng</language><publisher>Rugby: Elsevier Ltd</publisher><subject>Adsorption material screening ; Artificial neural networks ; Chemical engineering ; Deep learning ; Materials science ; Nested loops ; Neural networks ; Optimization ; Optimization uncertainty assessment ; Pressure swing adsorption ; Screening ; Uncertainty</subject><ispartof>Chemical engineering research & design, 2022-04, Vol.180, p.243-253</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier Science Ltd. Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c3c4568152fc259d8b76f0fd20ad63c2c3817e651628b97581f666c4c13ed09d3</citedby><cites>FETCH-LOGICAL-c376t-c3c4568152fc259d8b76f0fd20ad63c2c3817e651628b97581f666c4c13ed09d3</cites><orcidid>0000-0003-1397-9628 ; 0000-0002-0963-6449 ; 0000-0003-4269-1420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2022.02.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nogueira, Idelfonso B.R.</creatorcontrib><creatorcontrib>Dias, Rafael O.M.</creatorcontrib><creatorcontrib>Rebello, Carine M.</creatorcontrib><creatorcontrib>Costa, Erbet A.</creatorcontrib><creatorcontrib>Santana, Vinicius V.</creatorcontrib><creatorcontrib>Rodrigues, Alírio E.</creatorcontrib><creatorcontrib>Ferreira, Alexandre</creatorcontrib><creatorcontrib>Ribeiro, Ana M.</creatorcontrib><title>A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization</title><title>Chemical engineering research & design</title><description>•Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a map of the feasible operating regions.
The present work proposes a novel strategy for simultaneous material screening and process optimization. This strategy is based on the capacities of deep neural networks to extract knowledge of a database. It makes use of a nested optimization loop which is designed to couple the process and material points of view simultaneously. The optimization problem results are analyzed by a Fisher–Snedecor test, designed to assess the optimal points uncertainties, building the process’s feasible operating regions. This methodology describes the processes’ possible operating points that lead to optimal conditions, considering the material type as a decision variable. The methodology shows that this complex problem can be better understood when the uncertainties are taken into consideration. On the other hand, the proposed optimization problem can provide a way to address the issues related to optimizing adsorption processes considering the material screening.</description><subject>Adsorption material screening</subject><subject>Artificial neural networks</subject><subject>Chemical engineering</subject><subject>Deep learning</subject><subject>Materials science</subject><subject>Nested loops</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization uncertainty assessment</subject><subject>Pressure swing adsorption</subject><subject>Screening</subject><subject>Uncertainty</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtrGzEQx0VIIM7jE_Qi6NmuHl6t9tCDCX1BoJfkLGRp5MjdlbbSbkrznfIdO7Z7ySUwaGDm_5uHhpAPnK044-rTfuWeoPiVYEKsGBqXZ2TB2_V6KRslz8mCCSWXulXiklzVumeMYVYvyOuGpvwMPU1QJ_C0z3mkeZziEF_sFHOiY8nbHga6tRXzGPAAI8rnYg_U9CeXX5Xa5GkAWyNqkYdyggvs0FVkQkzxGAq50BqHuZ9sgjxXOtgJSsRi1RWAFNPuWA37Oqj1zTA35CLYvsLtf39NHr9-ebj7vrz_-e3H3eZ-6WSrJnzdulGaNyI40XReb1sVWPCCWa-kE05q3oJquBJ627WN5kEp5daOS_Cs8_KafDzVxSF-z_gzZp_nkrClEapTuuOy06iSJ5UrudYCwYwlDrb8NZyZw13M3hzvYg53MQyNS6Q-nyjABZ4jFFNdhOTAxwJuMj7Hd_l_rv6cSQ</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Nogueira, Idelfonso B.R.</creator><creator>Dias, Rafael O.M.</creator><creator>Rebello, Carine M.</creator><creator>Costa, Erbet A.</creator><creator>Santana, Vinicius V.</creator><creator>Rodrigues, Alírio E.</creator><creator>Ferreira, Alexandre</creator><creator>Ribeiro, Ana M.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1397-9628</orcidid><orcidid>https://orcid.org/0000-0002-0963-6449</orcidid><orcidid>https://orcid.org/0000-0003-4269-1420</orcidid></search><sort><creationdate>202204</creationdate><title>A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization</title><author>Nogueira, Idelfonso B.R. ; Dias, Rafael O.M. ; Rebello, Carine M. ; Costa, Erbet A. ; Santana, Vinicius V. ; Rodrigues, Alírio E. ; Ferreira, Alexandre ; Ribeiro, Ana M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c3c4568152fc259d8b76f0fd20ad63c2c3817e651628b97581f666c4c13ed09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption material screening</topic><topic>Artificial neural networks</topic><topic>Chemical engineering</topic><topic>Deep learning</topic><topic>Materials science</topic><topic>Nested loops</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization uncertainty assessment</topic><topic>Pressure swing adsorption</topic><topic>Screening</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nogueira, Idelfonso B.R.</creatorcontrib><creatorcontrib>Dias, Rafael O.M.</creatorcontrib><creatorcontrib>Rebello, Carine M.</creatorcontrib><creatorcontrib>Costa, Erbet A.</creatorcontrib><creatorcontrib>Santana, Vinicius V.</creatorcontrib><creatorcontrib>Rodrigues, Alírio E.</creatorcontrib><creatorcontrib>Ferreira, Alexandre</creatorcontrib><creatorcontrib>Ribeiro, Ana M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering research & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nogueira, Idelfonso B.R.</au><au>Dias, Rafael O.M.</au><au>Rebello, Carine M.</au><au>Costa, Erbet A.</au><au>Santana, Vinicius V.</au><au>Rodrigues, Alírio E.</au><au>Ferreira, Alexandre</au><au>Ribeiro, Ana M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization</atitle><jtitle>Chemical engineering research & design</jtitle><date>2022-04</date><risdate>2022</risdate><volume>180</volume><spage>243</spage><epage>253</epage><pages>243-253</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>•Material screening and simultaneous processes optimization.•Deep learning neural networks providing deep insights about the process behavior.•A nested loop is proposed to provide the integration of the level within the optimization framework.•Uncertainty assessment of the optimal points provides a map of the feasible operating regions.
The present work proposes a novel strategy for simultaneous material screening and process optimization. This strategy is based on the capacities of deep neural networks to extract knowledge of a database. It makes use of a nested optimization loop which is designed to couple the process and material points of view simultaneously. The optimization problem results are analyzed by a Fisher–Snedecor test, designed to assess the optimal points uncertainties, building the process’s feasible operating regions. This methodology describes the processes’ possible operating points that lead to optimal conditions, considering the material type as a decision variable. The methodology shows that this complex problem can be better understood when the uncertainties are taken into consideration. On the other hand, the proposed optimization problem can provide a way to address the issues related to optimizing adsorption processes considering the material screening.</abstract><cop>Rugby</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cherd.2022.02.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1397-9628</orcidid><orcidid>https://orcid.org/0000-0002-0963-6449</orcidid><orcidid>https://orcid.org/0000-0003-4269-1420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8762 |
ispartof | Chemical engineering research & design, 2022-04, Vol.180, p.243-253 |
issn | 0263-8762 1744-3563 |
language | eng |
recordid | cdi_proquest_journals_2696891398 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adsorption material screening Artificial neural networks Chemical engineering Deep learning Materials science Nested loops Neural networks Optimization Optimization uncertainty assessment Pressure swing adsorption Screening Uncertainty |
title | A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20nested%20loop%20optimization%20problem%20based%20on%20deep%20neural%20networks%20and%20feasible%20operation%20regions%20definition%20for%20simultaneous%20material%20screening%20and%20process%20optimization&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Nogueira,%20Idelfonso%20B.R.&rft.date=2022-04&rft.volume=180&rft.spage=243&rft.epage=253&rft.pages=243-253&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2022.02.013&rft_dat=%3Cproquest_cross%3E2696891398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696891398&rft_id=info:pmid/&rft_els_id=S0263876222000673&rfr_iscdi=true |