Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating

Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2022-04, Vol.282, p.125916, Article 125916
Hauptverfasser: Aswathy, N.R., Varghese, JiJi, Nair, Shree Ranjini, Kumar, R. Vinod
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 125916
container_title Materials chemistry and physics
container_volume 282
creator Aswathy, N.R.
Varghese, JiJi
Nair, Shree Ranjini
Kumar, R. Vinod
description Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy, and VSM analysis. XRD results reveals that doping of Mn retains the cubic phase of NiO but changes its lattice parameters and introduces strain in the NiO films. The crystallite size of NiO films decreases from 19.86 nm to 12.11nm as the doping concentration of Mn changes from 0 to 15 mol%. XPS and Micro-Raman spectrum confirm the successful incorporation of Mn ions into NiO. The intensity of the PL spectra decreases with increasing Mn content. The violet, blue, and green emissions in the luminescence spectrum indicate the presence of vacancy defects corresponding to nickel and oxygen. Our research shows that these defects influence the magnetic properties of the doped thin films of NiO. The results from the vibrating sample magnetometer (VSM) explain the ferromagnetic behavior of the Mn doped NiO thin films. [Display omitted] •The crystallite size decreases and band gap energy increases with Mn doping.•Single species heterovalent Mn doping has been suggested as the origin of room-temperature ferromagnetism.•Oxygen vacancy or nickel vacancy defects and BMPs are the sources of inducing ferromagnetism in Mn doped NiO thin films.
doi_str_mv 10.1016/j.matchemphys.2022.125916
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696891391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S025405842200222X</els_id><sourcerecordid>2696891391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cedb0b7c1f41fddc8fa12868ea2b83ab0933185b4e60e917c2bca8364aca104b3</originalsourceid><addsrcrecordid>eNqNUEtLAzEQDqJgrf6HiFe3ZrKv7FGKL6j2oJ5Dkp1ts-zLJBX6702pB4_CwMw3z28-Qq6BLYBBcdcuehXMFvtpu_cLzjhfAM8rKE7IDERZJWkK_JTMGM-zhOUiOycX3reMQQmQzsj2PbidCTunuls6TsGaQ6CGmvZqM2DEdHLjhC5Y9HRs6OuQ1BHX9M2uadjagTa2633swkm5mNd76scu2WBH_RTLZlTBDptLctaozuPVr5-Tz8eHj-Vzslo_vSzvV4lJsyokBmvNdGmgyaCpayMaBVwUAhXXIlWaVfEhkesMC4YVlIZro0RaZMooYJlO5-TmuDfS_tqhD7Idd26IJyUvqkJUkEabk-rYZdzovcNGTs72yu0lMHkQVrbyj7DyIKw8Chtnl8dZjG98W3TSG4tDZG4dmiDr0f5jyw_eRYj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696891391</pqid></control><display><type>article</type><title>Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating</title><source>Elsevier ScienceDirect Journals</source><creator>Aswathy, N.R. ; Varghese, JiJi ; Nair, Shree Ranjini ; Kumar, R. Vinod</creator><creatorcontrib>Aswathy, N.R. ; Varghese, JiJi ; Nair, Shree Ranjini ; Kumar, R. Vinod</creatorcontrib><description>Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy, and VSM analysis. XRD results reveals that doping of Mn retains the cubic phase of NiO but changes its lattice parameters and introduces strain in the NiO films. The crystallite size of NiO films decreases from 19.86 nm to 12.11nm as the doping concentration of Mn changes from 0 to 15 mol%. XPS and Micro-Raman spectrum confirm the successful incorporation of Mn ions into NiO. The intensity of the PL spectra decreases with increasing Mn content. The violet, blue, and green emissions in the luminescence spectrum indicate the presence of vacancy defects corresponding to nickel and oxygen. Our research shows that these defects influence the magnetic properties of the doped thin films of NiO. The results from the vibrating sample magnetometer (VSM) explain the ferromagnetic behavior of the Mn doped NiO thin films. [Display omitted] •The crystallite size decreases and band gap energy increases with Mn doping.•Single species heterovalent Mn doping has been suggested as the origin of room-temperature ferromagnetism.•Oxygen vacancy or nickel vacancy defects and BMPs are the sources of inducing ferromagnetism in Mn doped NiO thin films.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2022.125916</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bound magnetic polaron ; Crystal defects ; Crystallites ; Cubic lattice ; Doping ; Ferromagnetic materials ; Ferromagnetism ; Lattice parameters ; Lattice vacancies ; Magnetic properties ; Magnetism ; Magnetometers ; Manganese ; Mn-doped NiO thin Films ; Nickel oxides ; Optical properties ; Photoluminescence ; Raman spectroscopy ; Sol-gel processes ; Sol-gel spin coating ; Spectrum analysis ; Spin coating ; Spintronics ; Thin films ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Materials chemistry and physics, 2022-04, Vol.282, p.125916, Article 125916</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cedb0b7c1f41fddc8fa12868ea2b83ab0933185b4e60e917c2bca8364aca104b3</citedby><cites>FETCH-LOGICAL-c349t-cedb0b7c1f41fddc8fa12868ea2b83ab0933185b4e60e917c2bca8364aca104b3</cites><orcidid>0000-0002-0795-6369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S025405842200222X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Aswathy, N.R.</creatorcontrib><creatorcontrib>Varghese, JiJi</creatorcontrib><creatorcontrib>Nair, Shree Ranjini</creatorcontrib><creatorcontrib>Kumar, R. Vinod</creatorcontrib><title>Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating</title><title>Materials chemistry and physics</title><description>Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy, and VSM analysis. XRD results reveals that doping of Mn retains the cubic phase of NiO but changes its lattice parameters and introduces strain in the NiO films. The crystallite size of NiO films decreases from 19.86 nm to 12.11nm as the doping concentration of Mn changes from 0 to 15 mol%. XPS and Micro-Raman spectrum confirm the successful incorporation of Mn ions into NiO. The intensity of the PL spectra decreases with increasing Mn content. The violet, blue, and green emissions in the luminescence spectrum indicate the presence of vacancy defects corresponding to nickel and oxygen. Our research shows that these defects influence the magnetic properties of the doped thin films of NiO. The results from the vibrating sample magnetometer (VSM) explain the ferromagnetic behavior of the Mn doped NiO thin films. [Display omitted] •The crystallite size decreases and band gap energy increases with Mn doping.•Single species heterovalent Mn doping has been suggested as the origin of room-temperature ferromagnetism.•Oxygen vacancy or nickel vacancy defects and BMPs are the sources of inducing ferromagnetism in Mn doped NiO thin films.</description><subject>Bound magnetic polaron</subject><subject>Crystal defects</subject><subject>Crystallites</subject><subject>Cubic lattice</subject><subject>Doping</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetism</subject><subject>Lattice parameters</subject><subject>Lattice vacancies</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetometers</subject><subject>Manganese</subject><subject>Mn-doped NiO thin Films</subject><subject>Nickel oxides</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Raman spectroscopy</subject><subject>Sol-gel processes</subject><subject>Sol-gel spin coating</subject><subject>Spectrum analysis</subject><subject>Spin coating</subject><subject>Spintronics</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUEtLAzEQDqJgrf6HiFe3ZrKv7FGKL6j2oJ5Dkp1ts-zLJBX6702pB4_CwMw3z28-Qq6BLYBBcdcuehXMFvtpu_cLzjhfAM8rKE7IDERZJWkK_JTMGM-zhOUiOycX3reMQQmQzsj2PbidCTunuls6TsGaQ6CGmvZqM2DEdHLjhC5Y9HRs6OuQ1BHX9M2uadjagTa2633swkm5mNd76scu2WBH_RTLZlTBDptLctaozuPVr5-Tz8eHj-Vzslo_vSzvV4lJsyokBmvNdGmgyaCpayMaBVwUAhXXIlWaVfEhkesMC4YVlIZro0RaZMooYJlO5-TmuDfS_tqhD7Idd26IJyUvqkJUkEabk-rYZdzovcNGTs72yu0lMHkQVrbyj7DyIKw8Chtnl8dZjG98W3TSG4tDZG4dmiDr0f5jyw_eRYj8</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Aswathy, N.R.</creator><creator>Varghese, JiJi</creator><creator>Nair, Shree Ranjini</creator><creator>Kumar, R. Vinod</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0795-6369</orcidid></search><sort><creationdate>20220415</creationdate><title>Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating</title><author>Aswathy, N.R. ; Varghese, JiJi ; Nair, Shree Ranjini ; Kumar, R. Vinod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cedb0b7c1f41fddc8fa12868ea2b83ab0933185b4e60e917c2bca8364aca104b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bound magnetic polaron</topic><topic>Crystal defects</topic><topic>Crystallites</topic><topic>Cubic lattice</topic><topic>Doping</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetism</topic><topic>Lattice parameters</topic><topic>Lattice vacancies</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetometers</topic><topic>Manganese</topic><topic>Mn-doped NiO thin Films</topic><topic>Nickel oxides</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Raman spectroscopy</topic><topic>Sol-gel processes</topic><topic>Sol-gel spin coating</topic><topic>Spectrum analysis</topic><topic>Spin coating</topic><topic>Spintronics</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aswathy, N.R.</creatorcontrib><creatorcontrib>Varghese, JiJi</creatorcontrib><creatorcontrib>Nair, Shree Ranjini</creatorcontrib><creatorcontrib>Kumar, R. Vinod</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aswathy, N.R.</au><au>Varghese, JiJi</au><au>Nair, Shree Ranjini</au><au>Kumar, R. Vinod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating</atitle><jtitle>Materials chemistry and physics</jtitle><date>2022-04-15</date><risdate>2022</risdate><volume>282</volume><spage>125916</spage><pages>125916-</pages><artnum>125916</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy, and VSM analysis. XRD results reveals that doping of Mn retains the cubic phase of NiO but changes its lattice parameters and introduces strain in the NiO films. The crystallite size of NiO films decreases from 19.86 nm to 12.11nm as the doping concentration of Mn changes from 0 to 15 mol%. XPS and Micro-Raman spectrum confirm the successful incorporation of Mn ions into NiO. The intensity of the PL spectra decreases with increasing Mn content. The violet, blue, and green emissions in the luminescence spectrum indicate the presence of vacancy defects corresponding to nickel and oxygen. Our research shows that these defects influence the magnetic properties of the doped thin films of NiO. The results from the vibrating sample magnetometer (VSM) explain the ferromagnetic behavior of the Mn doped NiO thin films. [Display omitted] •The crystallite size decreases and band gap energy increases with Mn doping.•Single species heterovalent Mn doping has been suggested as the origin of room-temperature ferromagnetism.•Oxygen vacancy or nickel vacancy defects and BMPs are the sources of inducing ferromagnetism in Mn doped NiO thin films.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2022.125916</doi><orcidid>https://orcid.org/0000-0002-0795-6369</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2022-04, Vol.282, p.125916, Article 125916
issn 0254-0584
1879-3312
language eng
recordid cdi_proquest_journals_2696891391
source Elsevier ScienceDirect Journals
subjects Bound magnetic polaron
Crystal defects
Crystallites
Cubic lattice
Doping
Ferromagnetic materials
Ferromagnetism
Lattice parameters
Lattice vacancies
Magnetic properties
Magnetism
Magnetometers
Manganese
Mn-doped NiO thin Films
Nickel oxides
Optical properties
Photoluminescence
Raman spectroscopy
Sol-gel processes
Sol-gel spin coating
Spectrum analysis
Spin coating
Spintronics
Thin films
X ray photoelectron spectroscopy
X-ray diffraction
title Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20optical,%20and%20magnetic%20properties%20of%20Mn-doped%20NiO%20thin%20films%20prepared%20by%20sol-gel%20spin%20coating&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Aswathy,%20N.R.&rft.date=2022-04-15&rft.volume=282&rft.spage=125916&rft.pages=125916-&rft.artnum=125916&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2022.125916&rft_dat=%3Cproquest_cross%3E2696891391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696891391&rft_id=info:pmid/&rft_els_id=S025405842200222X&rfr_iscdi=true