Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating
Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2022-04, Vol.282, p.125916, Article 125916 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 125916 |
container_title | Materials chemistry and physics |
container_volume | 282 |
creator | Aswathy, N.R. Varghese, JiJi Nair, Shree Ranjini Kumar, R. Vinod |
description | Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy, and VSM analysis. XRD results reveals that doping of Mn retains the cubic phase of NiO but changes its lattice parameters and introduces strain in the NiO films. The crystallite size of NiO films decreases from 19.86 nm to 12.11nm as the doping concentration of Mn changes from 0 to 15 mol%. XPS and Micro-Raman spectrum confirm the successful incorporation of Mn ions into NiO. The intensity of the PL spectra decreases with increasing Mn content. The violet, blue, and green emissions in the luminescence spectrum indicate the presence of vacancy defects corresponding to nickel and oxygen. Our research shows that these defects influence the magnetic properties of the doped thin films of NiO. The results from the vibrating sample magnetometer (VSM) explain the ferromagnetic behavior of the Mn doped NiO thin films.
[Display omitted]
•The crystallite size decreases and band gap energy increases with Mn doping.•Single species heterovalent Mn doping has been suggested as the origin of room-temperature ferromagnetism.•Oxygen vacancy or nickel vacancy defects and BMPs are the sources of inducing ferromagnetism in Mn doped NiO thin films. |
doi_str_mv | 10.1016/j.matchemphys.2022.125916 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696891391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S025405842200222X</els_id><sourcerecordid>2696891391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-cedb0b7c1f41fddc8fa12868ea2b83ab0933185b4e60e917c2bca8364aca104b3</originalsourceid><addsrcrecordid>eNqNUEtLAzEQDqJgrf6HiFe3ZrKv7FGKL6j2oJ5Dkp1ts-zLJBX6702pB4_CwMw3z28-Qq6BLYBBcdcuehXMFvtpu_cLzjhfAM8rKE7IDERZJWkK_JTMGM-zhOUiOycX3reMQQmQzsj2PbidCTunuls6TsGaQ6CGmvZqM2DEdHLjhC5Y9HRs6OuQ1BHX9M2uadjagTa2633swkm5mNd76scu2WBH_RTLZlTBDptLctaozuPVr5-Tz8eHj-Vzslo_vSzvV4lJsyokBmvNdGmgyaCpayMaBVwUAhXXIlWaVfEhkesMC4YVlIZro0RaZMooYJlO5-TmuDfS_tqhD7Idd26IJyUvqkJUkEabk-rYZdzovcNGTs72yu0lMHkQVrbyj7DyIKw8Chtnl8dZjG98W3TSG4tDZG4dmiDr0f5jyw_eRYj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696891391</pqid></control><display><type>article</type><title>Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating</title><source>Elsevier ScienceDirect Journals</source><creator>Aswathy, N.R. ; Varghese, JiJi ; Nair, Shree Ranjini ; Kumar, R. Vinod</creator><creatorcontrib>Aswathy, N.R. ; Varghese, JiJi ; Nair, Shree Ranjini ; Kumar, R. Vinod</creatorcontrib><description>Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy, and VSM analysis. XRD results reveals that doping of Mn retains the cubic phase of NiO but changes its lattice parameters and introduces strain in the NiO films. The crystallite size of NiO films decreases from 19.86 nm to 12.11nm as the doping concentration of Mn changes from 0 to 15 mol%. XPS and Micro-Raman spectrum confirm the successful incorporation of Mn ions into NiO. The intensity of the PL spectra decreases with increasing Mn content. The violet, blue, and green emissions in the luminescence spectrum indicate the presence of vacancy defects corresponding to nickel and oxygen. Our research shows that these defects influence the magnetic properties of the doped thin films of NiO. The results from the vibrating sample magnetometer (VSM) explain the ferromagnetic behavior of the Mn doped NiO thin films.
[Display omitted]
•The crystallite size decreases and band gap energy increases with Mn doping.•Single species heterovalent Mn doping has been suggested as the origin of room-temperature ferromagnetism.•Oxygen vacancy or nickel vacancy defects and BMPs are the sources of inducing ferromagnetism in Mn doped NiO thin films.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2022.125916</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bound magnetic polaron ; Crystal defects ; Crystallites ; Cubic lattice ; Doping ; Ferromagnetic materials ; Ferromagnetism ; Lattice parameters ; Lattice vacancies ; Magnetic properties ; Magnetism ; Magnetometers ; Manganese ; Mn-doped NiO thin Films ; Nickel oxides ; Optical properties ; Photoluminescence ; Raman spectroscopy ; Sol-gel processes ; Sol-gel spin coating ; Spectrum analysis ; Spin coating ; Spintronics ; Thin films ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Materials chemistry and physics, 2022-04, Vol.282, p.125916, Article 125916</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-cedb0b7c1f41fddc8fa12868ea2b83ab0933185b4e60e917c2bca8364aca104b3</citedby><cites>FETCH-LOGICAL-c349t-cedb0b7c1f41fddc8fa12868ea2b83ab0933185b4e60e917c2bca8364aca104b3</cites><orcidid>0000-0002-0795-6369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S025405842200222X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Aswathy, N.R.</creatorcontrib><creatorcontrib>Varghese, JiJi</creatorcontrib><creatorcontrib>Nair, Shree Ranjini</creatorcontrib><creatorcontrib>Kumar, R. Vinod</creatorcontrib><title>Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating</title><title>Materials chemistry and physics</title><description>Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy, and VSM analysis. XRD results reveals that doping of Mn retains the cubic phase of NiO but changes its lattice parameters and introduces strain in the NiO films. The crystallite size of NiO films decreases from 19.86 nm to 12.11nm as the doping concentration of Mn changes from 0 to 15 mol%. XPS and Micro-Raman spectrum confirm the successful incorporation of Mn ions into NiO. The intensity of the PL spectra decreases with increasing Mn content. The violet, blue, and green emissions in the luminescence spectrum indicate the presence of vacancy defects corresponding to nickel and oxygen. Our research shows that these defects influence the magnetic properties of the doped thin films of NiO. The results from the vibrating sample magnetometer (VSM) explain the ferromagnetic behavior of the Mn doped NiO thin films.
[Display omitted]
•The crystallite size decreases and band gap energy increases with Mn doping.•Single species heterovalent Mn doping has been suggested as the origin of room-temperature ferromagnetism.•Oxygen vacancy or nickel vacancy defects and BMPs are the sources of inducing ferromagnetism in Mn doped NiO thin films.</description><subject>Bound magnetic polaron</subject><subject>Crystal defects</subject><subject>Crystallites</subject><subject>Cubic lattice</subject><subject>Doping</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetism</subject><subject>Lattice parameters</subject><subject>Lattice vacancies</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetometers</subject><subject>Manganese</subject><subject>Mn-doped NiO thin Films</subject><subject>Nickel oxides</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Raman spectroscopy</subject><subject>Sol-gel processes</subject><subject>Sol-gel spin coating</subject><subject>Spectrum analysis</subject><subject>Spin coating</subject><subject>Spintronics</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUEtLAzEQDqJgrf6HiFe3ZrKv7FGKL6j2oJ5Dkp1ts-zLJBX6702pB4_CwMw3z28-Qq6BLYBBcdcuehXMFvtpu_cLzjhfAM8rKE7IDERZJWkK_JTMGM-zhOUiOycX3reMQQmQzsj2PbidCTunuls6TsGaQ6CGmvZqM2DEdHLjhC5Y9HRs6OuQ1BHX9M2uadjagTa2633swkm5mNd76scu2WBH_RTLZlTBDptLctaozuPVr5-Tz8eHj-Vzslo_vSzvV4lJsyokBmvNdGmgyaCpayMaBVwUAhXXIlWaVfEhkesMC4YVlIZro0RaZMooYJlO5-TmuDfS_tqhD7Idd26IJyUvqkJUkEabk-rYZdzovcNGTs72yu0lMHkQVrbyj7DyIKw8Chtnl8dZjG98W3TSG4tDZG4dmiDr0f5jyw_eRYj8</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Aswathy, N.R.</creator><creator>Varghese, JiJi</creator><creator>Nair, Shree Ranjini</creator><creator>Kumar, R. Vinod</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0795-6369</orcidid></search><sort><creationdate>20220415</creationdate><title>Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating</title><author>Aswathy, N.R. ; Varghese, JiJi ; Nair, Shree Ranjini ; Kumar, R. Vinod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-cedb0b7c1f41fddc8fa12868ea2b83ab0933185b4e60e917c2bca8364aca104b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bound magnetic polaron</topic><topic>Crystal defects</topic><topic>Crystallites</topic><topic>Cubic lattice</topic><topic>Doping</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetism</topic><topic>Lattice parameters</topic><topic>Lattice vacancies</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetometers</topic><topic>Manganese</topic><topic>Mn-doped NiO thin Films</topic><topic>Nickel oxides</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Raman spectroscopy</topic><topic>Sol-gel processes</topic><topic>Sol-gel spin coating</topic><topic>Spectrum analysis</topic><topic>Spin coating</topic><topic>Spintronics</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aswathy, N.R.</creatorcontrib><creatorcontrib>Varghese, JiJi</creatorcontrib><creatorcontrib>Nair, Shree Ranjini</creatorcontrib><creatorcontrib>Kumar, R. Vinod</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aswathy, N.R.</au><au>Varghese, JiJi</au><au>Nair, Shree Ranjini</au><au>Kumar, R. Vinod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating</atitle><jtitle>Materials chemistry and physics</jtitle><date>2022-04-15</date><risdate>2022</risdate><volume>282</volume><spage>125916</spage><pages>125916-</pages><artnum>125916</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>Manganese (Mn)-doped Nickel (II) Oxide (NiO) thin films are prepared using sol-gel spin coating method. The structural, morphological, optical, and magnetic properties of these films are studied using XRD, FE-SEM, Micro-Raman spectroscopy, UV–visible spectroscopy, Photoluminescence (PL) spectroscopy, and VSM analysis. XRD results reveals that doping of Mn retains the cubic phase of NiO but changes its lattice parameters and introduces strain in the NiO films. The crystallite size of NiO films decreases from 19.86 nm to 12.11nm as the doping concentration of Mn changes from 0 to 15 mol%. XPS and Micro-Raman spectrum confirm the successful incorporation of Mn ions into NiO. The intensity of the PL spectra decreases with increasing Mn content. The violet, blue, and green emissions in the luminescence spectrum indicate the presence of vacancy defects corresponding to nickel and oxygen. Our research shows that these defects influence the magnetic properties of the doped thin films of NiO. The results from the vibrating sample magnetometer (VSM) explain the ferromagnetic behavior of the Mn doped NiO thin films.
[Display omitted]
•The crystallite size decreases and band gap energy increases with Mn doping.•Single species heterovalent Mn doping has been suggested as the origin of room-temperature ferromagnetism.•Oxygen vacancy or nickel vacancy defects and BMPs are the sources of inducing ferromagnetism in Mn doped NiO thin films.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2022.125916</doi><orcidid>https://orcid.org/0000-0002-0795-6369</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2022-04, Vol.282, p.125916, Article 125916 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_journals_2696891391 |
source | Elsevier ScienceDirect Journals |
subjects | Bound magnetic polaron Crystal defects Crystallites Cubic lattice Doping Ferromagnetic materials Ferromagnetism Lattice parameters Lattice vacancies Magnetic properties Magnetism Magnetometers Manganese Mn-doped NiO thin Films Nickel oxides Optical properties Photoluminescence Raman spectroscopy Sol-gel processes Sol-gel spin coating Spectrum analysis Spin coating Spintronics Thin films X ray photoelectron spectroscopy X-ray diffraction |
title | Structural, optical, and magnetic properties of Mn-doped NiO thin films prepared by sol-gel spin coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20optical,%20and%20magnetic%20properties%20of%20Mn-doped%20NiO%20thin%20films%20prepared%20by%20sol-gel%20spin%20coating&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Aswathy,%20N.R.&rft.date=2022-04-15&rft.volume=282&rft.spage=125916&rft.pages=125916-&rft.artnum=125916&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2022.125916&rft_dat=%3Cproquest_cross%3E2696891391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696891391&rft_id=info:pmid/&rft_els_id=S025405842200222X&rfr_iscdi=true |