A frequency spectrum-based method for detecting and classifying faults in HVDC systems

•Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics. This paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2022-06, Vol.207, p.107828, Article 107828
Hauptverfasser: Merlin, Victor Luiz, Santos, Ricardo Caneloi dos, Pavani, Ahda Pionkoski Grilo, Vieira, José Carlos Melo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107828
container_title Electric power systems research
container_volume 207
creator Merlin, Victor Luiz
Santos, Ricardo Caneloi dos
Pavani, Ahda Pionkoski Grilo
Vieira, José Carlos Melo
description •Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics. This paper proposes a method based on Artificial Neural Networks - ANNs for detecting and classifying faults in HVDC systems. An analysis of the frequency spectrum of different fault types in a HVDC system allowed finding different patterns of frequency spectrum for different fault types. As a result, the proposed method uses only the spectrum of the voltage signals to identify and classify faults in any point of the system, that is, upstream of the rectifier substation, in the DC line, or downstream of the inverter substation. The method is composed of an online step, to detect the fault, and an offline step, to classify it. The set of ANNs employed in the proposed scheme uses the same topology for all ANNs, which simplifies its practical implementation. The proposed algorithm was validated using VSC and CSC based technologies, being able to precisely detect and classify faults in HVDC systems.
doi_str_mv 10.1016/j.epsr.2022.107828
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696510064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877962200058X</els_id><sourcerecordid>2696510064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d92c49160ffcbdd56da3d920030aaabf1c212c7beee700e8f30cf30f276e6e7e3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Bz12TdDdpwcuyPlZY8KJ7DWky0Zbtw0wr9NubUs8ehmEe_3n8CLnlbMUZl_fVCjoMK8GEiAmVieyMLHim0kSwtTwnC5aqLFEql5fkCrFijMlcbRbkuKU-wPcAjR0pdmD7MNRJYRAcraH_ah31baAO-lgqm09qGkftySCWfpxib4ZTj7Rs6P74uKM4Yg81XpMLb04IN39-ST6en953--Tw9vK62x4Sm4qsT1wu7DrnknlvC-c20pk05hhLmTGm8NwKLqwqAEAxBplPmY3mhZIgQUG6JHfz3C608QnsddUOoYkrtZC53PD45zp2ibnLhhYxgNddKGsTRs2ZnvjpSk_89MRPz_yi6GEWQbz_p4Sg0ZYRE7gyRBbateV_8l_ymHpD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696510064</pqid></control><display><type>article</type><title>A frequency spectrum-based method for detecting and classifying faults in HVDC systems</title><source>Elsevier ScienceDirect Journals</source><creator>Merlin, Victor Luiz ; Santos, Ricardo Caneloi dos ; Pavani, Ahda Pionkoski Grilo ; Vieira, José Carlos Melo</creator><creatorcontrib>Merlin, Victor Luiz ; Santos, Ricardo Caneloi dos ; Pavani, Ahda Pionkoski Grilo ; Vieira, José Carlos Melo</creatorcontrib><description>•Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics. This paper proposes a method based on Artificial Neural Networks - ANNs for detecting and classifying faults in HVDC systems. An analysis of the frequency spectrum of different fault types in a HVDC system allowed finding different patterns of frequency spectrum for different fault types. As a result, the proposed method uses only the spectrum of the voltage signals to identify and classify faults in any point of the system, that is, upstream of the rectifier substation, in the DC line, or downstream of the inverter substation. The method is composed of an online step, to detect the fault, and an offline step, to classify it. The set of ANNs employed in the proposed scheme uses the same topology for all ANNs, which simplifies its practical implementation. The proposed algorithm was validated using VSC and CSC based technologies, being able to precisely detect and classify faults in HVDC systems.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2022.107828</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Fault detection ; Fault diagnosis ; Faults ; Frequency spectrum ; Neural networks ; Substations ; Topology</subject><ispartof>Electric power systems research, 2022-06, Vol.207, p.107828, Article 107828</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d92c49160ffcbdd56da3d920030aaabf1c212c7beee700e8f30cf30f276e6e7e3</citedby><cites>FETCH-LOGICAL-c328t-d92c49160ffcbdd56da3d920030aaabf1c212c7beee700e8f30cf30f276e6e7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsr.2022.107828$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Merlin, Victor Luiz</creatorcontrib><creatorcontrib>Santos, Ricardo Caneloi dos</creatorcontrib><creatorcontrib>Pavani, Ahda Pionkoski Grilo</creatorcontrib><creatorcontrib>Vieira, José Carlos Melo</creatorcontrib><title>A frequency spectrum-based method for detecting and classifying faults in HVDC systems</title><title>Electric power systems research</title><description>•Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics. This paper proposes a method based on Artificial Neural Networks - ANNs for detecting and classifying faults in HVDC systems. An analysis of the frequency spectrum of different fault types in a HVDC system allowed finding different patterns of frequency spectrum for different fault types. As a result, the proposed method uses only the spectrum of the voltage signals to identify and classify faults in any point of the system, that is, upstream of the rectifier substation, in the DC line, or downstream of the inverter substation. The method is composed of an online step, to detect the fault, and an offline step, to classify it. The set of ANNs employed in the proposed scheme uses the same topology for all ANNs, which simplifies its practical implementation. The proposed algorithm was validated using VSC and CSC based technologies, being able to precisely detect and classify faults in HVDC systems.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Frequency spectrum</subject><subject>Neural networks</subject><subject>Substations</subject><subject>Topology</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-AU8Bz12TdDdpwcuyPlZY8KJ7DWky0Zbtw0wr9NubUs8ehmEe_3n8CLnlbMUZl_fVCjoMK8GEiAmVieyMLHim0kSwtTwnC5aqLFEql5fkCrFijMlcbRbkuKU-wPcAjR0pdmD7MNRJYRAcraH_ah31baAO-lgqm09qGkftySCWfpxib4ZTj7Rs6P74uKM4Yg81XpMLb04IN39-ST6en953--Tw9vK62x4Sm4qsT1wu7DrnknlvC-c20pk05hhLmTGm8NwKLqwqAEAxBplPmY3mhZIgQUG6JHfz3C608QnsddUOoYkrtZC53PD45zp2ibnLhhYxgNddKGsTRs2ZnvjpSk_89MRPz_yi6GEWQbz_p4Sg0ZYRE7gyRBbateV_8l_ymHpD</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Merlin, Victor Luiz</creator><creator>Santos, Ricardo Caneloi dos</creator><creator>Pavani, Ahda Pionkoski Grilo</creator><creator>Vieira, José Carlos Melo</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202206</creationdate><title>A frequency spectrum-based method for detecting and classifying faults in HVDC systems</title><author>Merlin, Victor Luiz ; Santos, Ricardo Caneloi dos ; Pavani, Ahda Pionkoski Grilo ; Vieira, José Carlos Melo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d92c49160ffcbdd56da3d920030aaabf1c212c7beee700e8f30cf30f276e6e7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Frequency spectrum</topic><topic>Neural networks</topic><topic>Substations</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merlin, Victor Luiz</creatorcontrib><creatorcontrib>Santos, Ricardo Caneloi dos</creatorcontrib><creatorcontrib>Pavani, Ahda Pionkoski Grilo</creatorcontrib><creatorcontrib>Vieira, José Carlos Melo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlin, Victor Luiz</au><au>Santos, Ricardo Caneloi dos</au><au>Pavani, Ahda Pionkoski Grilo</au><au>Vieira, José Carlos Melo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A frequency spectrum-based method for detecting and classifying faults in HVDC systems</atitle><jtitle>Electric power systems research</jtitle><date>2022-06</date><risdate>2022</risdate><volume>207</volume><spage>107828</spage><pages>107828-</pages><artnum>107828</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics. This paper proposes a method based on Artificial Neural Networks - ANNs for detecting and classifying faults in HVDC systems. An analysis of the frequency spectrum of different fault types in a HVDC system allowed finding different patterns of frequency spectrum for different fault types. As a result, the proposed method uses only the spectrum of the voltage signals to identify and classify faults in any point of the system, that is, upstream of the rectifier substation, in the DC line, or downstream of the inverter substation. The method is composed of an online step, to detect the fault, and an offline step, to classify it. The set of ANNs employed in the proposed scheme uses the same topology for all ANNs, which simplifies its practical implementation. The proposed algorithm was validated using VSC and CSC based technologies, being able to precisely detect and classify faults in HVDC systems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2022.107828</doi></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2022-06, Vol.207, p.107828, Article 107828
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2696510064
source Elsevier ScienceDirect Journals
subjects Algorithms
Artificial neural networks
Classification
Fault detection
Fault diagnosis
Faults
Frequency spectrum
Neural networks
Substations
Topology
title A frequency spectrum-based method for detecting and classifying faults in HVDC systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20frequency%20spectrum-based%20method%20for%20detecting%20and%20classifying%20faults%20in%20HVDC%20systems&rft.jtitle=Electric%20power%20systems%20research&rft.au=Merlin,%20Victor%20Luiz&rft.date=2022-06&rft.volume=207&rft.spage=107828&rft.pages=107828-&rft.artnum=107828&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2022.107828&rft_dat=%3Cproquest_cross%3E2696510064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696510064&rft_id=info:pmid/&rft_els_id=S037877962200058X&rfr_iscdi=true