A frequency spectrum-based method for detecting and classifying faults in HVDC systems
•Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics. This paper...
Gespeichert in:
Veröffentlicht in: | Electric power systems research 2022-06, Vol.207, p.107828, Article 107828 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107828 |
container_title | Electric power systems research |
container_volume | 207 |
creator | Merlin, Victor Luiz Santos, Ricardo Caneloi dos Pavani, Ahda Pionkoski Grilo Vieira, José Carlos Melo |
description | •Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics.
This paper proposes a method based on Artificial Neural Networks - ANNs for detecting and classifying faults in HVDC systems. An analysis of the frequency spectrum of different fault types in a HVDC system allowed finding different patterns of frequency spectrum for different fault types. As a result, the proposed method uses only the spectrum of the voltage signals to identify and classify faults in any point of the system, that is, upstream of the rectifier substation, in the DC line, or downstream of the inverter substation. The method is composed of an online step, to detect the fault, and an offline step, to classify it. The set of ANNs employed in the proposed scheme uses the same topology for all ANNs, which simplifies its practical implementation. The proposed algorithm was validated using VSC and CSC based technologies, being able to precisely detect and classify faults in HVDC systems. |
doi_str_mv | 10.1016/j.epsr.2022.107828 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696510064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037877962200058X</els_id><sourcerecordid>2696510064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-d92c49160ffcbdd56da3d920030aaabf1c212c7beee700e8f30cf30f276e6e7e3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AU8Bz12TdDdpwcuyPlZY8KJ7DWky0Zbtw0wr9NubUs8ehmEe_3n8CLnlbMUZl_fVCjoMK8GEiAmVieyMLHim0kSwtTwnC5aqLFEql5fkCrFijMlcbRbkuKU-wPcAjR0pdmD7MNRJYRAcraH_ah31baAO-lgqm09qGkftySCWfpxib4ZTj7Rs6P74uKM4Yg81XpMLb04IN39-ST6en953--Tw9vK62x4Sm4qsT1wu7DrnknlvC-c20pk05hhLmTGm8NwKLqwqAEAxBplPmY3mhZIgQUG6JHfz3C608QnsddUOoYkrtZC53PD45zp2ibnLhhYxgNddKGsTRs2ZnvjpSk_89MRPz_yi6GEWQbz_p4Sg0ZYRE7gyRBbateV_8l_ymHpD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696510064</pqid></control><display><type>article</type><title>A frequency spectrum-based method for detecting and classifying faults in HVDC systems</title><source>Elsevier ScienceDirect Journals</source><creator>Merlin, Victor Luiz ; Santos, Ricardo Caneloi dos ; Pavani, Ahda Pionkoski Grilo ; Vieira, José Carlos Melo</creator><creatorcontrib>Merlin, Victor Luiz ; Santos, Ricardo Caneloi dos ; Pavani, Ahda Pionkoski Grilo ; Vieira, José Carlos Melo</creatorcontrib><description>•Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics.
This paper proposes a method based on Artificial Neural Networks - ANNs for detecting and classifying faults in HVDC systems. An analysis of the frequency spectrum of different fault types in a HVDC system allowed finding different patterns of frequency spectrum for different fault types. As a result, the proposed method uses only the spectrum of the voltage signals to identify and classify faults in any point of the system, that is, upstream of the rectifier substation, in the DC line, or downstream of the inverter substation. The method is composed of an online step, to detect the fault, and an offline step, to classify it. The set of ANNs employed in the proposed scheme uses the same topology for all ANNs, which simplifies its practical implementation. The proposed algorithm was validated using VSC and CSC based technologies, being able to precisely detect and classify faults in HVDC systems.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2022.107828</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Fault detection ; Fault diagnosis ; Faults ; Frequency spectrum ; Neural networks ; Substations ; Topology</subject><ispartof>Electric power systems research, 2022-06, Vol.207, p.107828, Article 107828</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-d92c49160ffcbdd56da3d920030aaabf1c212c7beee700e8f30cf30f276e6e7e3</citedby><cites>FETCH-LOGICAL-c328t-d92c49160ffcbdd56da3d920030aaabf1c212c7beee700e8f30cf30f276e6e7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsr.2022.107828$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Merlin, Victor Luiz</creatorcontrib><creatorcontrib>Santos, Ricardo Caneloi dos</creatorcontrib><creatorcontrib>Pavani, Ahda Pionkoski Grilo</creatorcontrib><creatorcontrib>Vieira, José Carlos Melo</creatorcontrib><title>A frequency spectrum-based method for detecting and classifying faults in HVDC systems</title><title>Electric power systems research</title><description>•Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics.
This paper proposes a method based on Artificial Neural Networks - ANNs for detecting and classifying faults in HVDC systems. An analysis of the frequency spectrum of different fault types in a HVDC system allowed finding different patterns of frequency spectrum for different fault types. As a result, the proposed method uses only the spectrum of the voltage signals to identify and classify faults in any point of the system, that is, upstream of the rectifier substation, in the DC line, or downstream of the inverter substation. The method is composed of an online step, to detect the fault, and an offline step, to classify it. The set of ANNs employed in the proposed scheme uses the same topology for all ANNs, which simplifies its practical implementation. The proposed algorithm was validated using VSC and CSC based technologies, being able to precisely detect and classify faults in HVDC systems.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Frequency spectrum</subject><subject>Neural networks</subject><subject>Substations</subject><subject>Topology</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-AU8Bz12TdDdpwcuyPlZY8KJ7DWky0Zbtw0wr9NubUs8ehmEe_3n8CLnlbMUZl_fVCjoMK8GEiAmVieyMLHim0kSwtTwnC5aqLFEql5fkCrFijMlcbRbkuKU-wPcAjR0pdmD7MNRJYRAcraH_ah31baAO-lgqm09qGkftySCWfpxib4ZTj7Rs6P74uKM4Yg81XpMLb04IN39-ST6en953--Tw9vK62x4Sm4qsT1wu7DrnknlvC-c20pk05hhLmTGm8NwKLqwqAEAxBplPmY3mhZIgQUG6JHfz3C608QnsddUOoYkrtZC53PD45zp2ibnLhhYxgNddKGsTRs2ZnvjpSk_89MRPz_yi6GEWQbz_p4Sg0ZYRE7gyRBbateV_8l_ymHpD</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Merlin, Victor Luiz</creator><creator>Santos, Ricardo Caneloi dos</creator><creator>Pavani, Ahda Pionkoski Grilo</creator><creator>Vieira, José Carlos Melo</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202206</creationdate><title>A frequency spectrum-based method for detecting and classifying faults in HVDC systems</title><author>Merlin, Victor Luiz ; Santos, Ricardo Caneloi dos ; Pavani, Ahda Pionkoski Grilo ; Vieira, José Carlos Melo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-d92c49160ffcbdd56da3d920030aaabf1c212c7beee700e8f30cf30f276e6e7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Frequency spectrum</topic><topic>Neural networks</topic><topic>Substations</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merlin, Victor Luiz</creatorcontrib><creatorcontrib>Santos, Ricardo Caneloi dos</creatorcontrib><creatorcontrib>Pavani, Ahda Pionkoski Grilo</creatorcontrib><creatorcontrib>Vieira, José Carlos Melo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlin, Victor Luiz</au><au>Santos, Ricardo Caneloi dos</au><au>Pavani, Ahda Pionkoski Grilo</au><au>Vieira, José Carlos Melo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A frequency spectrum-based method for detecting and classifying faults in HVDC systems</atitle><jtitle>Electric power systems research</jtitle><date>2022-06</date><risdate>2022</risdate><volume>207</volume><spage>107828</spage><pages>107828-</pages><artnum>107828</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Intelligent approach for protecting the whole HVDC system.•Only local signals are used for detecting and classifying faults.•Additional hardware or communication links are not needed.•Able for protecting VSC and CSC-HVDC systems.•Accurate performance for different fault characteristics.
This paper proposes a method based on Artificial Neural Networks - ANNs for detecting and classifying faults in HVDC systems. An analysis of the frequency spectrum of different fault types in a HVDC system allowed finding different patterns of frequency spectrum for different fault types. As a result, the proposed method uses only the spectrum of the voltage signals to identify and classify faults in any point of the system, that is, upstream of the rectifier substation, in the DC line, or downstream of the inverter substation. The method is composed of an online step, to detect the fault, and an offline step, to classify it. The set of ANNs employed in the proposed scheme uses the same topology for all ANNs, which simplifies its practical implementation. The proposed algorithm was validated using VSC and CSC based technologies, being able to precisely detect and classify faults in HVDC systems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2022.107828</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7796 |
ispartof | Electric power systems research, 2022-06, Vol.207, p.107828, Article 107828 |
issn | 0378-7796 1873-2046 |
language | eng |
recordid | cdi_proquest_journals_2696510064 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Artificial neural networks Classification Fault detection Fault diagnosis Faults Frequency spectrum Neural networks Substations Topology |
title | A frequency spectrum-based method for detecting and classifying faults in HVDC systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20frequency%20spectrum-based%20method%20for%20detecting%20and%20classifying%20faults%20in%20HVDC%20systems&rft.jtitle=Electric%20power%20systems%20research&rft.au=Merlin,%20Victor%20Luiz&rft.date=2022-06&rft.volume=207&rft.spage=107828&rft.pages=107828-&rft.artnum=107828&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2022.107828&rft_dat=%3Cproquest_cross%3E2696510064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696510064&rft_id=info:pmid/&rft_els_id=S037877962200058X&rfr_iscdi=true |