Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering

The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2022-08, Vol.44 (1), p.498-517
Hauptverfasser: Forrester, Richard J., Waddell, Lucas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue 1
container_start_page 498
container_title Journal of combinatorial optimization
container_volume 44
creator Forrester, Richard J.
Waddell, Lucas A.
description The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.
doi_str_mv 10.1007/s10878-021-00840-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696497381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696497381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-3f9e9995e7d2f45fb6fcbb3d5001e1c13ff5b2e173513d125ed2419d420975673</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bBrx0l8RBUvqRIH4IrlJHZJmybBTirRr8clSNw47aw0M7szhFwiXCNAdhMQ8ixnwJEB5Amw_RGZocwE43meHkcscs5SBfKUnIWwBoCIkxl5fxm8bVfDh23rdkUNberWGk-9dZ3fjo0Z6q6lnaORQYEhLceiLummNX0w5Yb2visau6W72tCd8bWJWxR3vrI-Gp6TE2eaYC9-55y83d-9Lh7Z8vnhaXG7ZKXAZGDCKauUkjaruEukK1JXFoWoJABaLFE4JwtuMRMSRYVc2oonqKqEg8pkmok5uZp84z-fow2DXnejb-NJzVOVJioTOUYWn1il70KIEXXv663xXxpBH3rUU4869qh_etT7KBKTKPSHRNb_Wf-j-gatEHZj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696497381</pqid></control><display><type>article</type><title>Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering</title><source>SpringerLink Journals - AutoHoldings</source><creator>Forrester, Richard J. ; Waddell, Lucas A.</creator><creatorcontrib>Forrester, Richard J. ; Waddell, Lucas A.</creatorcontrib><description>The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00840-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorial analysis ; Combinatorics ; Convex and Discrete Geometry ; Exact solutions ; Heuristic methods ; Integer programming ; Knapsack problem ; Linear programming ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Mixed integer ; Operations Research/Decision Theory ; Optimization ; Solvers ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2022-08, Vol.44 (1), p.498-517</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-3f9e9995e7d2f45fb6fcbb3d5001e1c13ff5b2e173513d125ed2419d420975673</cites><orcidid>0000-0001-9884-8533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00840-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00840-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Forrester, Richard J.</creatorcontrib><creatorcontrib>Waddell, Lucas A.</creatorcontrib><title>Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.</description><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Exact solutions</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Knapsack problem</subject><subject>Linear programming</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mixed integer</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Solvers</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bBrx0l8RBUvqRIH4IrlJHZJmybBTirRr8clSNw47aw0M7szhFwiXCNAdhMQ8ixnwJEB5Amw_RGZocwE43meHkcscs5SBfKUnIWwBoCIkxl5fxm8bVfDh23rdkUNberWGk-9dZ3fjo0Z6q6lnaORQYEhLceiLummNX0w5Yb2visau6W72tCd8bWJWxR3vrI-Gp6TE2eaYC9-55y83d-9Lh7Z8vnhaXG7ZKXAZGDCKauUkjaruEukK1JXFoWoJABaLFE4JwtuMRMSRYVc2oonqKqEg8pkmok5uZp84z-fow2DXnejb-NJzVOVJioTOUYWn1il70KIEXXv663xXxpBH3rUU4869qh_etT7KBKTKPSHRNb_Wf-j-gatEHZj</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Forrester, Richard J.</creator><creator>Waddell, Lucas A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9884-8533</orcidid></search><sort><creationdate>20220801</creationdate><title>Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering</title><author>Forrester, Richard J. ; Waddell, Lucas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-3f9e9995e7d2f45fb6fcbb3d5001e1c13ff5b2e173513d125ed2419d420975673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Exact solutions</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Knapsack problem</topic><topic>Linear programming</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mixed integer</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Solvers</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forrester, Richard J.</creatorcontrib><creatorcontrib>Waddell, Lucas A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forrester, Richard J.</au><au>Waddell, Lucas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>44</volume><issue>1</issue><spage>498</spage><epage>517</epage><pages>498-517</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00840-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9884-8533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2022-08, Vol.44 (1), p.498-517
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_2696497381
source SpringerLink Journals - AutoHoldings
subjects Combinatorial analysis
Combinatorics
Convex and Discrete Geometry
Exact solutions
Heuristic methods
Integer programming
Knapsack problem
Linear programming
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Mixed integer
Operations Research/Decision Theory
Optimization
Solvers
Theory of Computation
title Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthening%20a%20linear%20reformulation%20of%20the%200-1%20cubic%20knapsack%20problem%20via%20variable%20reordering&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Forrester,%20Richard%20J.&rft.date=2022-08-01&rft.volume=44&rft.issue=1&rft.spage=498&rft.epage=517&rft.pages=498-517&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00840-z&rft_dat=%3Cproquest_cross%3E2696497381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696497381&rft_id=info:pmid/&rfr_iscdi=true