Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering
The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2022-08, Vol.44 (1), p.498-517 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | 1 |
container_start_page | 498 |
container_title | Journal of combinatorial optimization |
container_volume | 44 |
creator | Forrester, Richard J. Waddell, Lucas A. |
description | The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method. |
doi_str_mv | 10.1007/s10878-021-00840-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696497381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696497381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-3f9e9995e7d2f45fb6fcbb3d5001e1c13ff5b2e173513d125ed2419d420975673</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bBrx0l8RBUvqRIH4IrlJHZJmybBTirRr8clSNw47aw0M7szhFwiXCNAdhMQ8ixnwJEB5Amw_RGZocwE43meHkcscs5SBfKUnIWwBoCIkxl5fxm8bVfDh23rdkUNberWGk-9dZ3fjo0Z6q6lnaORQYEhLceiLummNX0w5Yb2visau6W72tCd8bWJWxR3vrI-Gp6TE2eaYC9-55y83d-9Lh7Z8vnhaXG7ZKXAZGDCKauUkjaruEukK1JXFoWoJABaLFE4JwtuMRMSRYVc2oonqKqEg8pkmok5uZp84z-fow2DXnejb-NJzVOVJioTOUYWn1il70KIEXXv663xXxpBH3rUU4869qh_etT7KBKTKPSHRNb_Wf-j-gatEHZj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696497381</pqid></control><display><type>article</type><title>Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering</title><source>SpringerLink Journals - AutoHoldings</source><creator>Forrester, Richard J. ; Waddell, Lucas A.</creator><creatorcontrib>Forrester, Richard J. ; Waddell, Lucas A.</creatorcontrib><description>The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00840-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorial analysis ; Combinatorics ; Convex and Discrete Geometry ; Exact solutions ; Heuristic methods ; Integer programming ; Knapsack problem ; Linear programming ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Mixed integer ; Operations Research/Decision Theory ; Optimization ; Solvers ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2022-08, Vol.44 (1), p.498-517</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-3f9e9995e7d2f45fb6fcbb3d5001e1c13ff5b2e173513d125ed2419d420975673</cites><orcidid>0000-0001-9884-8533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00840-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00840-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Forrester, Richard J.</creatorcontrib><creatorcontrib>Waddell, Lucas A.</creatorcontrib><title>Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.</description><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Exact solutions</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Knapsack problem</subject><subject>Linear programming</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mixed integer</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Solvers</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bBrx0l8RBUvqRIH4IrlJHZJmybBTirRr8clSNw47aw0M7szhFwiXCNAdhMQ8ixnwJEB5Amw_RGZocwE43meHkcscs5SBfKUnIWwBoCIkxl5fxm8bVfDh23rdkUNberWGk-9dZ3fjo0Z6q6lnaORQYEhLceiLummNX0w5Yb2visau6W72tCd8bWJWxR3vrI-Gp6TE2eaYC9-55y83d-9Lh7Z8vnhaXG7ZKXAZGDCKauUkjaruEukK1JXFoWoJABaLFE4JwtuMRMSRYVc2oonqKqEg8pkmok5uZp84z-fow2DXnejb-NJzVOVJioTOUYWn1il70KIEXXv663xXxpBH3rUU4869qh_etT7KBKTKPSHRNb_Wf-j-gatEHZj</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Forrester, Richard J.</creator><creator>Waddell, Lucas A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9884-8533</orcidid></search><sort><creationdate>20220801</creationdate><title>Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering</title><author>Forrester, Richard J. ; Waddell, Lucas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-3f9e9995e7d2f45fb6fcbb3d5001e1c13ff5b2e173513d125ed2419d420975673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Exact solutions</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Knapsack problem</topic><topic>Linear programming</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mixed integer</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Solvers</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forrester, Richard J.</creatorcontrib><creatorcontrib>Waddell, Lucas A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forrester, Richard J.</au><au>Waddell, Lucas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>44</volume><issue>1</issue><spage>498</spage><epage>517</epage><pages>498-517</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately leads to reduced overall solution times. In addition, we develop a simple heuristic method for obtaining good-quality CKP solutions that can be used to provide a warm start to the solver. Computational tests demonstrate the effectiveness of both our variable reordering strategy and heuristic method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00840-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9884-8533</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-6905 |
ispartof | Journal of combinatorial optimization, 2022-08, Vol.44 (1), p.498-517 |
issn | 1382-6905 1573-2886 |
language | eng |
recordid | cdi_proquest_journals_2696497381 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorial analysis Combinatorics Convex and Discrete Geometry Exact solutions Heuristic methods Integer programming Knapsack problem Linear programming Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Mixed integer Operations Research/Decision Theory Optimization Solvers Theory of Computation |
title | Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthening%20a%20linear%20reformulation%20of%20the%200-1%20cubic%20knapsack%20problem%20via%20variable%20reordering&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Forrester,%20Richard%20J.&rft.date=2022-08-01&rft.volume=44&rft.issue=1&rft.spage=498&rft.epage=517&rft.pages=498-517&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00840-z&rft_dat=%3Cproquest_cross%3E2696497381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696497381&rft_id=info:pmid/&rfr_iscdi=true |