Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost
The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives o...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2022, Vol.44 (1), p.557-582 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 582 |
---|---|
container_issue | 1 |
container_start_page | 557 |
container_title | Journal of combinatorial optimization |
container_volume | 44 |
creator | Martin, Mateus Yanasse, Horacio Hideki Salles-Neto, Luiz Leduíno |
description | The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns increases production costs. In this paper, we aim at solving the bi-objective CSP-S that analyzes the trade-offs between the number of objects and the number of patterns. We first derive an upper bound on the maximum frequency of a pattern in the cutting plan. Then, we propose a pattern-based pseudo-polynomial integer linear programming (ILP) formulation for the CSP-S. To obtain the Pareto optimal frontier, this formulation is embedded into a straightforward framework which solves the problem of minimizing the number of objects subject to a limited number of patterns in an iterative manner. Since we are not aware of other approaches in the literature that have solved the bi-objective CSP-S exactly, we derive an ILP formulation based on Harjunkoski et al. (Comput Chem Eng 20:121–126, 1996. https://doi.org/10.1016/0098-1354(96)00031-2) into this framework to provide an alternative exact approach. The results of the computational experiments using a general-purpose ILP solver indicated that the approaches are proper for instances with solutions characterized by a moderate number of objects and a few patterns in the Pareto optimal frontier. |
doi_str_mv | 10.1007/s10878-022-00848-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696497187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696497187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4aa4e90c372ad1ac9b01c1f467a06c98124d6775ed79d1ef4c956cf2dfe560933</originalsourceid><addsrcrecordid>eNp9kEtLAzEAhIMoWKt_wFPAczTJZvM4SvFRKNiDeg1pkm23djc1ySL21xtdwZunmcPMMHwAXBJ8TTAWN4lgKSTClCKMJZPocAQmpBYVolLy4-IrSRFXuD4FZyltMcbFswl4XZqcfezRyiTv4HyxhF1wfpdgEyLMGw9D75FrO9-nNvRmB-2Qc9uvYcrBvsF9DKud7-BHmzcw-TzsoQ0pn4OTxuySv_jVKXi5v3uePaLF08N8drtAtiIqI2YM8wrbSlDjiLFqhYklDePCYG6VJJQ5LkTtnVCO-IZZVXPbUNf4mmNVVVNwNe6WH--DT1lvwxDLzaQpV5wpQaQoKTqmbAwpRd_ofWw7Ez81wfqbnx756cJP__DTh1KqxlIq4X7t49_0P60vzQJ0RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696497187</pqid></control><display><type>article</type><title>Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost</title><source>Springer Nature - Complete Springer Journals</source><creator>Martin, Mateus ; Yanasse, Horacio Hideki ; Salles-Neto, Luiz Leduíno</creator><creatorcontrib>Martin, Mateus ; Yanasse, Horacio Hideki ; Salles-Neto, Luiz Leduíno</creatorcontrib><description>The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns increases production costs. In this paper, we aim at solving the bi-objective CSP-S that analyzes the trade-offs between the number of objects and the number of patterns. We first derive an upper bound on the maximum frequency of a pattern in the cutting plan. Then, we propose a pattern-based pseudo-polynomial integer linear programming (ILP) formulation for the CSP-S. To obtain the Pareto optimal frontier, this formulation is embedded into a straightforward framework which solves the problem of minimizing the number of objects subject to a limited number of patterns in an iterative manner. Since we are not aware of other approaches in the literature that have solved the bi-objective CSP-S exactly, we derive an ILP formulation based on Harjunkoski et al. (Comput Chem Eng 20:121–126, 1996. https://doi.org/10.1016/0098-1354(96)00031-2) into this framework to provide an alternative exact approach. The results of the computational experiments using a general-purpose ILP solver indicated that the approaches are proper for instances with solutions characterized by a moderate number of objects and a few patterns in the Pareto optimal frontier.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-022-00848-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Convex and Discrete Geometry ; Cutlery ; Cutting equipment ; Integer programming ; Iterative methods ; Knives ; Linear programming ; Machine tools ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Pareto optimum ; Polynomials ; Production costs ; Theory of Computation ; Upper bounds</subject><ispartof>Journal of combinatorial optimization, 2022, Vol.44 (1), p.557-582</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4aa4e90c372ad1ac9b01c1f467a06c98124d6775ed79d1ef4c956cf2dfe560933</citedby><cites>FETCH-LOGICAL-c319t-4aa4e90c372ad1ac9b01c1f467a06c98124d6775ed79d1ef4c956cf2dfe560933</cites><orcidid>0000-0002-6722-7571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-022-00848-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-022-00848-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Martin, Mateus</creatorcontrib><creatorcontrib>Yanasse, Horacio Hideki</creatorcontrib><creatorcontrib>Salles-Neto, Luiz Leduíno</creatorcontrib><title>Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns increases production costs. In this paper, we aim at solving the bi-objective CSP-S that analyzes the trade-offs between the number of objects and the number of patterns. We first derive an upper bound on the maximum frequency of a pattern in the cutting plan. Then, we propose a pattern-based pseudo-polynomial integer linear programming (ILP) formulation for the CSP-S. To obtain the Pareto optimal frontier, this formulation is embedded into a straightforward framework which solves the problem of minimizing the number of objects subject to a limited number of patterns in an iterative manner. Since we are not aware of other approaches in the literature that have solved the bi-objective CSP-S exactly, we derive an ILP formulation based on Harjunkoski et al. (Comput Chem Eng 20:121–126, 1996. https://doi.org/10.1016/0098-1354(96)00031-2) into this framework to provide an alternative exact approach. The results of the computational experiments using a general-purpose ILP solver indicated that the approaches are proper for instances with solutions characterized by a moderate number of objects and a few patterns in the Pareto optimal frontier.</description><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Cutlery</subject><subject>Cutting equipment</subject><subject>Integer programming</subject><subject>Iterative methods</subject><subject>Knives</subject><subject>Linear programming</subject><subject>Machine tools</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Polynomials</subject><subject>Production costs</subject><subject>Theory of Computation</subject><subject>Upper bounds</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEAhIMoWKt_wFPAczTJZvM4SvFRKNiDeg1pkm23djc1ySL21xtdwZunmcPMMHwAXBJ8TTAWN4lgKSTClCKMJZPocAQmpBYVolLy4-IrSRFXuD4FZyltMcbFswl4XZqcfezRyiTv4HyxhF1wfpdgEyLMGw9D75FrO9-nNvRmB-2Qc9uvYcrBvsF9DKud7-BHmzcw-TzsoQ0pn4OTxuySv_jVKXi5v3uePaLF08N8drtAtiIqI2YM8wrbSlDjiLFqhYklDePCYG6VJJQ5LkTtnVCO-IZZVXPbUNf4mmNVVVNwNe6WH--DT1lvwxDLzaQpV5wpQaQoKTqmbAwpRd_ofWw7Ez81wfqbnx756cJP__DTh1KqxlIq4X7t49_0P60vzQJ0RA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Martin, Mateus</creator><creator>Yanasse, Horacio Hideki</creator><creator>Salles-Neto, Luiz Leduíno</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6722-7571</orcidid></search><sort><creationdate>2022</creationdate><title>Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost</title><author>Martin, Mateus ; Yanasse, Horacio Hideki ; Salles-Neto, Luiz Leduíno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4aa4e90c372ad1ac9b01c1f467a06c98124d6775ed79d1ef4c956cf2dfe560933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Cutlery</topic><topic>Cutting equipment</topic><topic>Integer programming</topic><topic>Iterative methods</topic><topic>Knives</topic><topic>Linear programming</topic><topic>Machine tools</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Polynomials</topic><topic>Production costs</topic><topic>Theory of Computation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Mateus</creatorcontrib><creatorcontrib>Yanasse, Horacio Hideki</creatorcontrib><creatorcontrib>Salles-Neto, Luiz Leduíno</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Mateus</au><au>Yanasse, Horacio Hideki</au><au>Salles-Neto, Luiz Leduíno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022</date><risdate>2022</risdate><volume>44</volume><issue>1</issue><spage>557</spage><epage>582</epage><pages>557-582</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns increases production costs. In this paper, we aim at solving the bi-objective CSP-S that analyzes the trade-offs between the number of objects and the number of patterns. We first derive an upper bound on the maximum frequency of a pattern in the cutting plan. Then, we propose a pattern-based pseudo-polynomial integer linear programming (ILP) formulation for the CSP-S. To obtain the Pareto optimal frontier, this formulation is embedded into a straightforward framework which solves the problem of minimizing the number of objects subject to a limited number of patterns in an iterative manner. Since we are not aware of other approaches in the literature that have solved the bi-objective CSP-S exactly, we derive an ILP formulation based on Harjunkoski et al. (Comput Chem Eng 20:121–126, 1996. https://doi.org/10.1016/0098-1354(96)00031-2) into this framework to provide an alternative exact approach. The results of the computational experiments using a general-purpose ILP solver indicated that the approaches are proper for instances with solutions characterized by a moderate number of objects and a few patterns in the Pareto optimal frontier.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-022-00848-z</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-6722-7571</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-6905 |
ispartof | Journal of combinatorial optimization, 2022, Vol.44 (1), p.557-582 |
issn | 1382-6905 1573-2886 |
language | eng |
recordid | cdi_proquest_journals_2696497187 |
source | Springer Nature - Complete Springer Journals |
subjects | Combinatorics Convex and Discrete Geometry Cutlery Cutting equipment Integer programming Iterative methods Knives Linear programming Machine tools Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Pareto optimum Polynomials Production costs Theory of Computation Upper bounds |
title | Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern-based%20ILP%20models%20for%20the%20one-dimensional%20cutting%20stock%20problem%20with%20setup%20cost&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Martin,%20Mateus&rft.date=2022&rft.volume=44&rft.issue=1&rft.spage=557&rft.epage=582&rft.pages=557-582&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-022-00848-z&rft_dat=%3Cproquest_cross%3E2696497187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696497187&rft_id=info:pmid/&rfr_iscdi=true |