Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost

The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2022, Vol.44 (1), p.557-582
Hauptverfasser: Martin, Mateus, Yanasse, Horacio Hideki, Salles-Neto, Luiz Leduíno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 582
container_issue 1
container_start_page 557
container_title Journal of combinatorial optimization
container_volume 44
creator Martin, Mateus
Yanasse, Horacio Hideki
Salles-Neto, Luiz Leduíno
description The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns increases production costs. In this paper, we aim at solving the bi-objective CSP-S that analyzes the trade-offs between the number of objects and the number of patterns. We first derive an upper bound on the maximum frequency of a pattern in the cutting plan. Then, we propose a pattern-based pseudo-polynomial integer linear programming (ILP) formulation for the CSP-S. To obtain the Pareto optimal frontier, this formulation is embedded into a straightforward framework which solves the problem of minimizing the number of objects subject to a limited number of patterns in an iterative manner. Since we are not aware of other approaches in the literature that have solved the bi-objective CSP-S exactly, we derive an ILP formulation based on Harjunkoski et al. (Comput Chem Eng 20:121–126, 1996. https://doi.org/10.1016/0098-1354(96)00031-2) into this framework to provide an alternative exact approach. The results of the computational experiments using a general-purpose ILP solver indicated that the approaches are proper for instances with solutions characterized by a moderate number of objects and a few patterns in the Pareto optimal frontier.
doi_str_mv 10.1007/s10878-022-00848-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696497187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696497187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4aa4e90c372ad1ac9b01c1f467a06c98124d6775ed79d1ef4c956cf2dfe560933</originalsourceid><addsrcrecordid>eNp9kEtLAzEAhIMoWKt_wFPAczTJZvM4SvFRKNiDeg1pkm23djc1ySL21xtdwZunmcPMMHwAXBJ8TTAWN4lgKSTClCKMJZPocAQmpBYVolLy4-IrSRFXuD4FZyltMcbFswl4XZqcfezRyiTv4HyxhF1wfpdgEyLMGw9D75FrO9-nNvRmB-2Qc9uvYcrBvsF9DKud7-BHmzcw-TzsoQ0pn4OTxuySv_jVKXi5v3uePaLF08N8drtAtiIqI2YM8wrbSlDjiLFqhYklDePCYG6VJJQ5LkTtnVCO-IZZVXPbUNf4mmNVVVNwNe6WH--DT1lvwxDLzaQpV5wpQaQoKTqmbAwpRd_ofWw7Ez81wfqbnx756cJP__DTh1KqxlIq4X7t49_0P60vzQJ0RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696497187</pqid></control><display><type>article</type><title>Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost</title><source>Springer Nature - Complete Springer Journals</source><creator>Martin, Mateus ; Yanasse, Horacio Hideki ; Salles-Neto, Luiz Leduíno</creator><creatorcontrib>Martin, Mateus ; Yanasse, Horacio Hideki ; Salles-Neto, Luiz Leduíno</creatorcontrib><description>The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns increases production costs. In this paper, we aim at solving the bi-objective CSP-S that analyzes the trade-offs between the number of objects and the number of patterns. We first derive an upper bound on the maximum frequency of a pattern in the cutting plan. Then, we propose a pattern-based pseudo-polynomial integer linear programming (ILP) formulation for the CSP-S. To obtain the Pareto optimal frontier, this formulation is embedded into a straightforward framework which solves the problem of minimizing the number of objects subject to a limited number of patterns in an iterative manner. Since we are not aware of other approaches in the literature that have solved the bi-objective CSP-S exactly, we derive an ILP formulation based on Harjunkoski et al. (Comput Chem Eng 20:121–126, 1996. https://doi.org/10.1016/0098-1354(96)00031-2) into this framework to provide an alternative exact approach. The results of the computational experiments using a general-purpose ILP solver indicated that the approaches are proper for instances with solutions characterized by a moderate number of objects and a few patterns in the Pareto optimal frontier.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-022-00848-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Convex and Discrete Geometry ; Cutlery ; Cutting equipment ; Integer programming ; Iterative methods ; Knives ; Linear programming ; Machine tools ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Pareto optimum ; Polynomials ; Production costs ; Theory of Computation ; Upper bounds</subject><ispartof>Journal of combinatorial optimization, 2022, Vol.44 (1), p.557-582</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4aa4e90c372ad1ac9b01c1f467a06c98124d6775ed79d1ef4c956cf2dfe560933</citedby><cites>FETCH-LOGICAL-c319t-4aa4e90c372ad1ac9b01c1f467a06c98124d6775ed79d1ef4c956cf2dfe560933</cites><orcidid>0000-0002-6722-7571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-022-00848-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-022-00848-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Martin, Mateus</creatorcontrib><creatorcontrib>Yanasse, Horacio Hideki</creatorcontrib><creatorcontrib>Salles-Neto, Luiz Leduíno</creatorcontrib><title>Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns increases production costs. In this paper, we aim at solving the bi-objective CSP-S that analyzes the trade-offs between the number of objects and the number of patterns. We first derive an upper bound on the maximum frequency of a pattern in the cutting plan. Then, we propose a pattern-based pseudo-polynomial integer linear programming (ILP) formulation for the CSP-S. To obtain the Pareto optimal frontier, this formulation is embedded into a straightforward framework which solves the problem of minimizing the number of objects subject to a limited number of patterns in an iterative manner. Since we are not aware of other approaches in the literature that have solved the bi-objective CSP-S exactly, we derive an ILP formulation based on Harjunkoski et al. (Comput Chem Eng 20:121–126, 1996. https://doi.org/10.1016/0098-1354(96)00031-2) into this framework to provide an alternative exact approach. The results of the computational experiments using a general-purpose ILP solver indicated that the approaches are proper for instances with solutions characterized by a moderate number of objects and a few patterns in the Pareto optimal frontier.</description><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Cutlery</subject><subject>Cutting equipment</subject><subject>Integer programming</subject><subject>Iterative methods</subject><subject>Knives</subject><subject>Linear programming</subject><subject>Machine tools</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Polynomials</subject><subject>Production costs</subject><subject>Theory of Computation</subject><subject>Upper bounds</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEAhIMoWKt_wFPAczTJZvM4SvFRKNiDeg1pkm23djc1ySL21xtdwZunmcPMMHwAXBJ8TTAWN4lgKSTClCKMJZPocAQmpBYVolLy4-IrSRFXuD4FZyltMcbFswl4XZqcfezRyiTv4HyxhF1wfpdgEyLMGw9D75FrO9-nNvRmB-2Qc9uvYcrBvsF9DKud7-BHmzcw-TzsoQ0pn4OTxuySv_jVKXi5v3uePaLF08N8drtAtiIqI2YM8wrbSlDjiLFqhYklDePCYG6VJJQ5LkTtnVCO-IZZVXPbUNf4mmNVVVNwNe6WH--DT1lvwxDLzaQpV5wpQaQoKTqmbAwpRd_ofWw7Ez81wfqbnx756cJP__DTh1KqxlIq4X7t49_0P60vzQJ0RA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Martin, Mateus</creator><creator>Yanasse, Horacio Hideki</creator><creator>Salles-Neto, Luiz Leduíno</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6722-7571</orcidid></search><sort><creationdate>2022</creationdate><title>Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost</title><author>Martin, Mateus ; Yanasse, Horacio Hideki ; Salles-Neto, Luiz Leduíno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4aa4e90c372ad1ac9b01c1f467a06c98124d6775ed79d1ef4c956cf2dfe560933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Cutlery</topic><topic>Cutting equipment</topic><topic>Integer programming</topic><topic>Iterative methods</topic><topic>Knives</topic><topic>Linear programming</topic><topic>Machine tools</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Polynomials</topic><topic>Production costs</topic><topic>Theory of Computation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Mateus</creatorcontrib><creatorcontrib>Yanasse, Horacio Hideki</creatorcontrib><creatorcontrib>Salles-Neto, Luiz Leduíno</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Mateus</au><au>Yanasse, Horacio Hideki</au><au>Salles-Neto, Luiz Leduíno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022</date><risdate>2022</risdate><volume>44</volume><issue>1</issue><spage>557</spage><epage>582</epage><pages>557-582</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns increases production costs. In this paper, we aim at solving the bi-objective CSP-S that analyzes the trade-offs between the number of objects and the number of patterns. We first derive an upper bound on the maximum frequency of a pattern in the cutting plan. Then, we propose a pattern-based pseudo-polynomial integer linear programming (ILP) formulation for the CSP-S. To obtain the Pareto optimal frontier, this formulation is embedded into a straightforward framework which solves the problem of minimizing the number of objects subject to a limited number of patterns in an iterative manner. Since we are not aware of other approaches in the literature that have solved the bi-objective CSP-S exactly, we derive an ILP formulation based on Harjunkoski et al. (Comput Chem Eng 20:121–126, 1996. https://doi.org/10.1016/0098-1354(96)00031-2) into this framework to provide an alternative exact approach. The results of the computational experiments using a general-purpose ILP solver indicated that the approaches are proper for instances with solutions characterized by a moderate number of objects and a few patterns in the Pareto optimal frontier.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-022-00848-z</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-6722-7571</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2022, Vol.44 (1), p.557-582
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_2696497187
source Springer Nature - Complete Springer Journals
subjects Combinatorics
Convex and Discrete Geometry
Cutlery
Cutting equipment
Integer programming
Iterative methods
Knives
Linear programming
Machine tools
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Pareto optimum
Polynomials
Production costs
Theory of Computation
Upper bounds
title Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern-based%20ILP%20models%20for%20the%20one-dimensional%20cutting%20stock%20problem%20with%20setup%20cost&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Martin,%20Mateus&rft.date=2022&rft.volume=44&rft.issue=1&rft.spage=557&rft.epage=582&rft.pages=557-582&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-022-00848-z&rft_dat=%3Cproquest_cross%3E2696497187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696497187&rft_id=info:pmid/&rfr_iscdi=true