An online trading problem with an increasing number of available products

In this paper, we study a multiple time series search problem in which at the first n periods, one product is produced in each period and becomes sellable. The total length of the trading horizon N ( N > n ), i.e., the total number of trading periods (which includes the first n periods when the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2022, Vol.44 (1), p.518-531
Hauptverfasser: Zhang, Wenming, Zhang, Ye, Cheng, Yongxi, Zheng, Shankui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 531
container_issue 1
container_start_page 518
container_title Journal of combinatorial optimization
container_volume 44
creator Zhang, Wenming
Zhang, Ye
Cheng, Yongxi
Zheng, Shankui
description In this paper, we study a multiple time series search problem in which at the first n periods, one product is produced in each period and becomes sellable. The total length of the trading horizon N ( N > n ), i.e., the total number of trading periods (which includes the first n periods when the products are produced), is unknown beforehand. All the n products are homogeneous. At each period, a price is observed and the player must decide immediately the number of available products to sell at this period, without the knowledge of future prices and when the trading horizon ends. The objective is to maximize the total revenue from selling the n products. We present an online algorithm ON for this problem and prove its competitive ratio. A lower bound on the competitive ratio for this online problem is also proved. Numerical results for the theoretical competitive ratio of algorithm ON and the lower bound are also reported.
doi_str_mv 10.1007/s10878-021-00841-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696497064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696497064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-20f7cb30c14ddecf6c881258d8f0ec7e6e478713dac611442f332941b76d08c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTm0SSzLMUXFNx0HzJJpk6ZZmoyo_TfmzqCO1f3wP3OOXAQuqVwTwHUQ6aglSbAKAHQgpLjGZrRheKEaS3Pi-aaEVnB4hJd5bwDgKLFDL0uI-5j18aAh2R9G7f4kPq6C3v81Q7v2EbcRpeCzadXHPd1SLhvsP20bWcLd8L96IZ8jS4a2-Vw83vnaPP0uFm9kPXb8-tquSaO02ogDBrlag6OCu-Da6TTmrKF9rqB4FSQQSitKPfWSUqFYA3nrBK0VtKDdnyO7qbY0vsxhjyYXT-mWBoNk5UUlQIpCsUmyqU-5xQac0jt3qajoWBOi5lpMVMWMz-LmWMx8cmUCxy3If1F_-P6BnSYbtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696497064</pqid></control><display><type>article</type><title>An online trading problem with an increasing number of available products</title><source>SpringerLink Journals</source><creator>Zhang, Wenming ; Zhang, Ye ; Cheng, Yongxi ; Zheng, Shankui</creator><creatorcontrib>Zhang, Wenming ; Zhang, Ye ; Cheng, Yongxi ; Zheng, Shankui</creatorcontrib><description>In this paper, we study a multiple time series search problem in which at the first n periods, one product is produced in each period and becomes sellable. The total length of the trading horizon N ( N &gt; n ), i.e., the total number of trading periods (which includes the first n periods when the products are produced), is unknown beforehand. All the n products are homogeneous. At each period, a price is observed and the player must decide immediately the number of available products to sell at this period, without the knowledge of future prices and when the trading horizon ends. The objective is to maximize the total revenue from selling the n products. We present an online algorithm ON for this problem and prove its competitive ratio. A lower bound on the competitive ratio for this online problem is also proved. Numerical results for the theoretical competitive ratio of algorithm ON and the lower bound are also reported.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00841-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Combinatorics ; Convex and Discrete Geometry ; Horizon ; Lower bounds ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2022, Vol.44 (1), p.518-531</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-20f7cb30c14ddecf6c881258d8f0ec7e6e478713dac611442f332941b76d08c3</citedby><cites>FETCH-LOGICAL-c319t-20f7cb30c14ddecf6c881258d8f0ec7e6e478713dac611442f332941b76d08c3</cites><orcidid>0000-0003-0405-5263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00841-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00841-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Wenming</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Cheng, Yongxi</creatorcontrib><creatorcontrib>Zheng, Shankui</creatorcontrib><title>An online trading problem with an increasing number of available products</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>In this paper, we study a multiple time series search problem in which at the first n periods, one product is produced in each period and becomes sellable. The total length of the trading horizon N ( N &gt; n ), i.e., the total number of trading periods (which includes the first n periods when the products are produced), is unknown beforehand. All the n products are homogeneous. At each period, a price is observed and the player must decide immediately the number of available products to sell at this period, without the knowledge of future prices and when the trading horizon ends. The objective is to maximize the total revenue from selling the n products. We present an online algorithm ON for this problem and prove its competitive ratio. A lower bound on the competitive ratio for this online problem is also proved. Numerical results for the theoretical competitive ratio of algorithm ON and the lower bound are also reported.</description><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Horizon</subject><subject>Lower bounds</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTm0SSzLMUXFNx0HzJJpk6ZZmoyo_TfmzqCO1f3wP3OOXAQuqVwTwHUQ6aglSbAKAHQgpLjGZrRheKEaS3Pi-aaEVnB4hJd5bwDgKLFDL0uI-5j18aAh2R9G7f4kPq6C3v81Q7v2EbcRpeCzadXHPd1SLhvsP20bWcLd8L96IZ8jS4a2-Vw83vnaPP0uFm9kPXb8-tquSaO02ogDBrlag6OCu-Da6TTmrKF9rqB4FSQQSitKPfWSUqFYA3nrBK0VtKDdnyO7qbY0vsxhjyYXT-mWBoNk5UUlQIpCsUmyqU-5xQac0jt3qajoWBOi5lpMVMWMz-LmWMx8cmUCxy3If1F_-P6BnSYbtM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Wenming</creator><creator>Zhang, Ye</creator><creator>Cheng, Yongxi</creator><creator>Zheng, Shankui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0405-5263</orcidid></search><sort><creationdate>2022</creationdate><title>An online trading problem with an increasing number of available products</title><author>Zhang, Wenming ; Zhang, Ye ; Cheng, Yongxi ; Zheng, Shankui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-20f7cb30c14ddecf6c881258d8f0ec7e6e478713dac611442f332941b76d08c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Horizon</topic><topic>Lower bounds</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenming</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Cheng, Yongxi</creatorcontrib><creatorcontrib>Zheng, Shankui</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenming</au><au>Zhang, Ye</au><au>Cheng, Yongxi</au><au>Zheng, Shankui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An online trading problem with an increasing number of available products</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022</date><risdate>2022</risdate><volume>44</volume><issue>1</issue><spage>518</spage><epage>531</epage><pages>518-531</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>In this paper, we study a multiple time series search problem in which at the first n periods, one product is produced in each period and becomes sellable. The total length of the trading horizon N ( N &gt; n ), i.e., the total number of trading periods (which includes the first n periods when the products are produced), is unknown beforehand. All the n products are homogeneous. At each period, a price is observed and the player must decide immediately the number of available products to sell at this period, without the knowledge of future prices and when the trading horizon ends. The objective is to maximize the total revenue from selling the n products. We present an online algorithm ON for this problem and prove its competitive ratio. A lower bound on the competitive ratio for this online problem is also proved. Numerical results for the theoretical competitive ratio of algorithm ON and the lower bound are also reported.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00841-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0405-5263</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2022, Vol.44 (1), p.518-531
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_2696497064
source SpringerLink Journals
subjects Algorithms
Combinatorics
Convex and Discrete Geometry
Horizon
Lower bounds
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
title An online trading problem with an increasing number of available products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20online%20trading%20problem%20with%20an%20increasing%20number%20of%20available%20products&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Zhang,%20Wenming&rft.date=2022&rft.volume=44&rft.issue=1&rft.spage=518&rft.epage=531&rft.pages=518-531&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00841-y&rft_dat=%3Cproquest_cross%3E2696497064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696497064&rft_id=info:pmid/&rfr_iscdi=true