An online trading problem with an increasing number of available products
In this paper, we study a multiple time series search problem in which at the first n periods, one product is produced in each period and becomes sellable. The total length of the trading horizon N ( N > n ), i.e., the total number of trading periods (which includes the first n periods when the p...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2022, Vol.44 (1), p.518-531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 531 |
---|---|
container_issue | 1 |
container_start_page | 518 |
container_title | Journal of combinatorial optimization |
container_volume | 44 |
creator | Zhang, Wenming Zhang, Ye Cheng, Yongxi Zheng, Shankui |
description | In this paper, we study a multiple time series search problem in which at the first
n
periods, one product is produced in each period and becomes sellable. The total length of the trading horizon
N
(
N
>
n
), i.e., the total number of trading periods (which includes the first
n
periods when the products are produced), is unknown beforehand. All the
n
products are homogeneous. At each period, a price is observed and the player must decide immediately the number of available products to sell at this period, without the knowledge of future prices and when the trading horizon ends. The objective is to maximize the total revenue from selling the
n
products. We present an online algorithm
ON
for this problem and prove its competitive ratio. A lower bound on the competitive ratio for this online problem is also proved. Numerical results for the theoretical competitive ratio of algorithm
ON
and the lower bound are also reported. |
doi_str_mv | 10.1007/s10878-021-00841-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696497064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696497064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-20f7cb30c14ddecf6c881258d8f0ec7e6e478713dac611442f332941b76d08c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTm0SSzLMUXFNx0HzJJpk6ZZmoyo_TfmzqCO1f3wP3OOXAQuqVwTwHUQ6aglSbAKAHQgpLjGZrRheKEaS3Pi-aaEVnB4hJd5bwDgKLFDL0uI-5j18aAh2R9G7f4kPq6C3v81Q7v2EbcRpeCzadXHPd1SLhvsP20bWcLd8L96IZ8jS4a2-Vw83vnaPP0uFm9kPXb8-tquSaO02ogDBrlag6OCu-Da6TTmrKF9rqB4FSQQSitKPfWSUqFYA3nrBK0VtKDdnyO7qbY0vsxhjyYXT-mWBoNk5UUlQIpCsUmyqU-5xQac0jt3qajoWBOi5lpMVMWMz-LmWMx8cmUCxy3If1F_-P6BnSYbtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696497064</pqid></control><display><type>article</type><title>An online trading problem with an increasing number of available products</title><source>SpringerLink Journals</source><creator>Zhang, Wenming ; Zhang, Ye ; Cheng, Yongxi ; Zheng, Shankui</creator><creatorcontrib>Zhang, Wenming ; Zhang, Ye ; Cheng, Yongxi ; Zheng, Shankui</creatorcontrib><description>In this paper, we study a multiple time series search problem in which at the first
n
periods, one product is produced in each period and becomes sellable. The total length of the trading horizon
N
(
N
>
n
), i.e., the total number of trading periods (which includes the first
n
periods when the products are produced), is unknown beforehand. All the
n
products are homogeneous. At each period, a price is observed and the player must decide immediately the number of available products to sell at this period, without the knowledge of future prices and when the trading horizon ends. The objective is to maximize the total revenue from selling the
n
products. We present an online algorithm
ON
for this problem and prove its competitive ratio. A lower bound on the competitive ratio for this online problem is also proved. Numerical results for the theoretical competitive ratio of algorithm
ON
and the lower bound are also reported.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00841-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Combinatorics ; Convex and Discrete Geometry ; Horizon ; Lower bounds ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2022, Vol.44 (1), p.518-531</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-20f7cb30c14ddecf6c881258d8f0ec7e6e478713dac611442f332941b76d08c3</citedby><cites>FETCH-LOGICAL-c319t-20f7cb30c14ddecf6c881258d8f0ec7e6e478713dac611442f332941b76d08c3</cites><orcidid>0000-0003-0405-5263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00841-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00841-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Wenming</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Cheng, Yongxi</creatorcontrib><creatorcontrib>Zheng, Shankui</creatorcontrib><title>An online trading problem with an increasing number of available products</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>In this paper, we study a multiple time series search problem in which at the first
n
periods, one product is produced in each period and becomes sellable. The total length of the trading horizon
N
(
N
>
n
), i.e., the total number of trading periods (which includes the first
n
periods when the products are produced), is unknown beforehand. All the
n
products are homogeneous. At each period, a price is observed and the player must decide immediately the number of available products to sell at this period, without the knowledge of future prices and when the trading horizon ends. The objective is to maximize the total revenue from selling the
n
products. We present an online algorithm
ON
for this problem and prove its competitive ratio. A lower bound on the competitive ratio for this online problem is also proved. Numerical results for the theoretical competitive ratio of algorithm
ON
and the lower bound are also reported.</description><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Horizon</subject><subject>Lower bounds</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTm0SSzLMUXFNx0HzJJpk6ZZmoyo_TfmzqCO1f3wP3OOXAQuqVwTwHUQ6aglSbAKAHQgpLjGZrRheKEaS3Pi-aaEVnB4hJd5bwDgKLFDL0uI-5j18aAh2R9G7f4kPq6C3v81Q7v2EbcRpeCzadXHPd1SLhvsP20bWcLd8L96IZ8jS4a2-Vw83vnaPP0uFm9kPXb8-tquSaO02ogDBrlag6OCu-Da6TTmrKF9rqB4FSQQSitKPfWSUqFYA3nrBK0VtKDdnyO7qbY0vsxhjyYXT-mWBoNk5UUlQIpCsUmyqU-5xQac0jt3qajoWBOi5lpMVMWMz-LmWMx8cmUCxy3If1F_-P6BnSYbtM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Wenming</creator><creator>Zhang, Ye</creator><creator>Cheng, Yongxi</creator><creator>Zheng, Shankui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0405-5263</orcidid></search><sort><creationdate>2022</creationdate><title>An online trading problem with an increasing number of available products</title><author>Zhang, Wenming ; Zhang, Ye ; Cheng, Yongxi ; Zheng, Shankui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-20f7cb30c14ddecf6c881258d8f0ec7e6e478713dac611442f332941b76d08c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Horizon</topic><topic>Lower bounds</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenming</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Cheng, Yongxi</creatorcontrib><creatorcontrib>Zheng, Shankui</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenming</au><au>Zhang, Ye</au><au>Cheng, Yongxi</au><au>Zheng, Shankui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An online trading problem with an increasing number of available products</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022</date><risdate>2022</risdate><volume>44</volume><issue>1</issue><spage>518</spage><epage>531</epage><pages>518-531</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>In this paper, we study a multiple time series search problem in which at the first
n
periods, one product is produced in each period and becomes sellable. The total length of the trading horizon
N
(
N
>
n
), i.e., the total number of trading periods (which includes the first
n
periods when the products are produced), is unknown beforehand. All the
n
products are homogeneous. At each period, a price is observed and the player must decide immediately the number of available products to sell at this period, without the knowledge of future prices and when the trading horizon ends. The objective is to maximize the total revenue from selling the
n
products. We present an online algorithm
ON
for this problem and prove its competitive ratio. A lower bound on the competitive ratio for this online problem is also proved. Numerical results for the theoretical competitive ratio of algorithm
ON
and the lower bound are also reported.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00841-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0405-5263</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-6905 |
ispartof | Journal of combinatorial optimization, 2022, Vol.44 (1), p.518-531 |
issn | 1382-6905 1573-2886 |
language | eng |
recordid | cdi_proquest_journals_2696497064 |
source | SpringerLink Journals |
subjects | Algorithms Combinatorics Convex and Discrete Geometry Horizon Lower bounds Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Theory of Computation |
title | An online trading problem with an increasing number of available products |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20online%20trading%20problem%20with%20an%20increasing%20number%20of%20available%20products&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Zhang,%20Wenming&rft.date=2022&rft.volume=44&rft.issue=1&rft.spage=518&rft.epage=531&rft.pages=518-531&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00841-y&rft_dat=%3Cproquest_cross%3E2696497064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696497064&rft_id=info:pmid/&rfr_iscdi=true |