Mutation based test generation using search based social group optimization approach

Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary intelligence 2022-09, Vol.15 (3), p.2105-2114
Hauptverfasser: Rani, Shweta, Suri, Bharti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2114
container_issue 3
container_start_page 2105
container_title Evolutionary intelligence
container_volume 15
creator Rani, Shweta
Suri, Bharti
description Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved test suite in search space. Meta-heuristic techniques switch between multiple solutions in search space and result in an optimized solution. This paper implements and presents a new test set generation algorithm, SGO-MT, by embracing a recently developed search based approach, Social Group Optimization algorithm (SGO) for exposing numerous artificial faults in the software. It works on the principle of human learning nature from society and a teacher in the group. The efficacy of the proposed approach is measured on thirteen Java programs widely used in academia. The results demonstrate the good performance for finding the simple and stubborn faults.
doi_str_mv 10.1007/s12065-021-00618-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696496901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696496901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3458c46cb0ebc80088a13a82ce3ff2bfa55ff03f0489f9508fff20d5597dcdb93</originalsourceid><addsrcrecordid>eNp9kE9PxCAQxYnRxHX1C3hq4hkdoFA4mo3_Eo2X9UwohW43u6VCe9BPL9qN3jzNZPJ7700eQpcErglAdZMIBcExUIIBBJFYHKEFkaLEXJHq-HcHdYrOUtpmiEJVLtD6ZRrN2IW-qE1yTTG6NBat612cr1Pq-rZIzkS7OSAp2M7sijaGaSjCMHb77nOGzTDEYOzmHJ14s0vu4jCX6O3-br16xM-vD0-r22dsGVEjZiWXthS2BldbCSClIcxIah3zntbecO49MA-lVF5xkD6foeFcVY1tasWW6Gr2zbHvU_5cb8MU-xypqVCiVEIByRSdKRtDStF5PcRub-KHJqC_29Nzezq3p3_a0yKL2CxKGe5bF_-s_1F9AXYlc80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696496901</pqid></control><display><type>article</type><title>Mutation based test generation using search based social group optimization approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rani, Shweta ; Suri, Bharti</creator><creatorcontrib>Rani, Shweta ; Suri, Bharti</creatorcontrib><description>Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved test suite in search space. Meta-heuristic techniques switch between multiple solutions in search space and result in an optimized solution. This paper implements and presents a new test set generation algorithm, SGO-MT, by embracing a recently developed search based approach, Social Group Optimization algorithm (SGO) for exposing numerous artificial faults in the software. It works on the principle of human learning nature from society and a teacher in the group. The efficacy of the proposed approach is measured on thirteen Java programs widely used in academia. The results demonstrate the good performance for finding the simple and stubborn faults.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-021-00618-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Control ; Engineering ; Faults ; Heuristic ; Heuristic methods ; Mathematical and Computational Engineering ; Mechatronics ; Mutation ; Optimization ; Research Paper ; Robotics ; Searching ; Software testing ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2022-09, Vol.15 (3), p.2105-2114</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3458c46cb0ebc80088a13a82ce3ff2bfa55ff03f0489f9508fff20d5597dcdb93</citedby><cites>FETCH-LOGICAL-c319t-3458c46cb0ebc80088a13a82ce3ff2bfa55ff03f0489f9508fff20d5597dcdb93</cites><orcidid>0000-0002-9285-7073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-021-00618-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-021-00618-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rani, Shweta</creatorcontrib><creatorcontrib>Suri, Bharti</creatorcontrib><title>Mutation based test generation using search based social group optimization approach</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved test suite in search space. Meta-heuristic techniques switch between multiple solutions in search space and result in an optimized solution. This paper implements and presents a new test set generation algorithm, SGO-MT, by embracing a recently developed search based approach, Social Group Optimization algorithm (SGO) for exposing numerous artificial faults in the software. It works on the principle of human learning nature from society and a teacher in the group. The efficacy of the proposed approach is measured on thirteen Java programs widely used in academia. The results demonstrate the good performance for finding the simple and stubborn faults.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Control</subject><subject>Engineering</subject><subject>Faults</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Robotics</subject><subject>Searching</subject><subject>Software testing</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PxCAQxYnRxHX1C3hq4hkdoFA4mo3_Eo2X9UwohW43u6VCe9BPL9qN3jzNZPJ7700eQpcErglAdZMIBcExUIIBBJFYHKEFkaLEXJHq-HcHdYrOUtpmiEJVLtD6ZRrN2IW-qE1yTTG6NBat612cr1Pq-rZIzkS7OSAp2M7sijaGaSjCMHb77nOGzTDEYOzmHJ14s0vu4jCX6O3-br16xM-vD0-r22dsGVEjZiWXthS2BldbCSClIcxIah3zntbecO49MA-lVF5xkD6foeFcVY1tasWW6Gr2zbHvU_5cb8MU-xypqVCiVEIByRSdKRtDStF5PcRub-KHJqC_29Nzezq3p3_a0yKL2CxKGe5bF_-s_1F9AXYlc80</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Rani, Shweta</creator><creator>Suri, Bharti</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9285-7073</orcidid></search><sort><creationdate>20220901</creationdate><title>Mutation based test generation using search based social group optimization approach</title><author>Rani, Shweta ; Suri, Bharti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3458c46cb0ebc80088a13a82ce3ff2bfa55ff03f0489f9508fff20d5597dcdb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Control</topic><topic>Engineering</topic><topic>Faults</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Robotics</topic><topic>Searching</topic><topic>Software testing</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Shweta</creatorcontrib><creatorcontrib>Suri, Bharti</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Shweta</au><au>Suri, Bharti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation based test generation using search based social group optimization approach</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>2105</spage><epage>2114</epage><pages>2105-2114</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved test suite in search space. Meta-heuristic techniques switch between multiple solutions in search space and result in an optimized solution. This paper implements and presents a new test set generation algorithm, SGO-MT, by embracing a recently developed search based approach, Social Group Optimization algorithm (SGO) for exposing numerous artificial faults in the software. It works on the principle of human learning nature from society and a teacher in the group. The efficacy of the proposed approach is measured on thirteen Java programs widely used in academia. The results demonstrate the good performance for finding the simple and stubborn faults.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-021-00618-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9285-7073</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2022-09, Vol.15 (3), p.2105-2114
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_2696496901
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Control
Engineering
Faults
Heuristic
Heuristic methods
Mathematical and Computational Engineering
Mechatronics
Mutation
Optimization
Research Paper
Robotics
Searching
Software testing
Statistical Physics and Dynamical Systems
title Mutation based test generation using search based social group optimization approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20based%20test%20generation%20using%20search%20based%20social%20group%20optimization%20approach&rft.jtitle=Evolutionary%20intelligence&rft.au=Rani,%20Shweta&rft.date=2022-09-01&rft.volume=15&rft.issue=3&rft.spage=2105&rft.epage=2114&rft.pages=2105-2114&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-021-00618-6&rft_dat=%3Cproquest_cross%3E2696496901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696496901&rft_id=info:pmid/&rfr_iscdi=true