Mutation based test generation using search based social group optimization approach
Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved...
Gespeichert in:
Veröffentlicht in: | Evolutionary intelligence 2022-09, Vol.15 (3), p.2105-2114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2114 |
---|---|
container_issue | 3 |
container_start_page | 2105 |
container_title | Evolutionary intelligence |
container_volume | 15 |
creator | Rani, Shweta Suri, Bharti |
description | Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved test suite in search space. Meta-heuristic techniques switch between multiple solutions in search space and result in an optimized solution. This paper implements and presents a new test set generation algorithm, SGO-MT, by embracing a recently developed search based approach, Social Group Optimization algorithm (SGO) for exposing numerous artificial faults in the software. It works on the principle of human learning nature from society and a teacher in the group. The efficacy of the proposed approach is measured on thirteen Java programs widely used in academia. The results demonstrate the good performance for finding the simple and stubborn faults. |
doi_str_mv | 10.1007/s12065-021-00618-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696496901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696496901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3458c46cb0ebc80088a13a82ce3ff2bfa55ff03f0489f9508fff20d5597dcdb93</originalsourceid><addsrcrecordid>eNp9kE9PxCAQxYnRxHX1C3hq4hkdoFA4mo3_Eo2X9UwohW43u6VCe9BPL9qN3jzNZPJ7700eQpcErglAdZMIBcExUIIBBJFYHKEFkaLEXJHq-HcHdYrOUtpmiEJVLtD6ZRrN2IW-qE1yTTG6NBat612cr1Pq-rZIzkS7OSAp2M7sijaGaSjCMHb77nOGzTDEYOzmHJ14s0vu4jCX6O3-br16xM-vD0-r22dsGVEjZiWXthS2BldbCSClIcxIah3zntbecO49MA-lVF5xkD6foeFcVY1tasWW6Gr2zbHvU_5cb8MU-xypqVCiVEIByRSdKRtDStF5PcRub-KHJqC_29Nzezq3p3_a0yKL2CxKGe5bF_-s_1F9AXYlc80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696496901</pqid></control><display><type>article</type><title>Mutation based test generation using search based social group optimization approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rani, Shweta ; Suri, Bharti</creator><creatorcontrib>Rani, Shweta ; Suri, Bharti</creatorcontrib><description>Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved test suite in search space. Meta-heuristic techniques switch between multiple solutions in search space and result in an optimized solution. This paper implements and presents a new test set generation algorithm, SGO-MT, by embracing a recently developed search based approach, Social Group Optimization algorithm (SGO) for exposing numerous artificial faults in the software. It works on the principle of human learning nature from society and a teacher in the group. The efficacy of the proposed approach is measured on thirteen Java programs widely used in academia. The results demonstrate the good performance for finding the simple and stubborn faults.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-021-00618-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Control ; Engineering ; Faults ; Heuristic ; Heuristic methods ; Mathematical and Computational Engineering ; Mechatronics ; Mutation ; Optimization ; Research Paper ; Robotics ; Searching ; Software testing ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2022-09, Vol.15 (3), p.2105-2114</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3458c46cb0ebc80088a13a82ce3ff2bfa55ff03f0489f9508fff20d5597dcdb93</citedby><cites>FETCH-LOGICAL-c319t-3458c46cb0ebc80088a13a82ce3ff2bfa55ff03f0489f9508fff20d5597dcdb93</cites><orcidid>0000-0002-9285-7073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-021-00618-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-021-00618-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rani, Shweta</creatorcontrib><creatorcontrib>Suri, Bharti</creatorcontrib><title>Mutation based test generation using search based social group optimization approach</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved test suite in search space. Meta-heuristic techniques switch between multiple solutions in search space and result in an optimized solution. This paper implements and presents a new test set generation algorithm, SGO-MT, by embracing a recently developed search based approach, Social Group Optimization algorithm (SGO) for exposing numerous artificial faults in the software. It works on the principle of human learning nature from society and a teacher in the group. The efficacy of the proposed approach is measured on thirteen Java programs widely used in academia. The results demonstrate the good performance for finding the simple and stubborn faults.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Control</subject><subject>Engineering</subject><subject>Faults</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Robotics</subject><subject>Searching</subject><subject>Software testing</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PxCAQxYnRxHX1C3hq4hkdoFA4mo3_Eo2X9UwohW43u6VCe9BPL9qN3jzNZPJ7700eQpcErglAdZMIBcExUIIBBJFYHKEFkaLEXJHq-HcHdYrOUtpmiEJVLtD6ZRrN2IW-qE1yTTG6NBat612cr1Pq-rZIzkS7OSAp2M7sijaGaSjCMHb77nOGzTDEYOzmHJ14s0vu4jCX6O3-br16xM-vD0-r22dsGVEjZiWXthS2BldbCSClIcxIah3zntbecO49MA-lVF5xkD6foeFcVY1tasWW6Gr2zbHvU_5cb8MU-xypqVCiVEIByRSdKRtDStF5PcRub-KHJqC_29Nzezq3p3_a0yKL2CxKGe5bF_-s_1F9AXYlc80</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Rani, Shweta</creator><creator>Suri, Bharti</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9285-7073</orcidid></search><sort><creationdate>20220901</creationdate><title>Mutation based test generation using search based social group optimization approach</title><author>Rani, Shweta ; Suri, Bharti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3458c46cb0ebc80088a13a82ce3ff2bfa55ff03f0489f9508fff20d5597dcdb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Control</topic><topic>Engineering</topic><topic>Faults</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Robotics</topic><topic>Searching</topic><topic>Software testing</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Shweta</creatorcontrib><creatorcontrib>Suri, Bharti</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Shweta</au><au>Suri, Bharti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation based test generation using search based social group optimization approach</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>15</volume><issue>3</issue><spage>2105</spage><epage>2114</epage><pages>2105-2114</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Mutation based test generation is a popular and effective process for creating the test suite that is appraised for its caliber over a pool of artificial faults. These artificial faults can be infused by imposing mutagenic rules that further assist meta-heuristic techniques for searching the evolved test suite in search space. Meta-heuristic techniques switch between multiple solutions in search space and result in an optimized solution. This paper implements and presents a new test set generation algorithm, SGO-MT, by embracing a recently developed search based approach, Social Group Optimization algorithm (SGO) for exposing numerous artificial faults in the software. It works on the principle of human learning nature from society and a teacher in the group. The efficacy of the proposed approach is measured on thirteen Java programs widely used in academia. The results demonstrate the good performance for finding the simple and stubborn faults.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-021-00618-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9285-7073</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5909 |
ispartof | Evolutionary intelligence, 2022-09, Vol.15 (3), p.2105-2114 |
issn | 1864-5909 1864-5917 |
language | eng |
recordid | cdi_proquest_journals_2696496901 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Control Engineering Faults Heuristic Heuristic methods Mathematical and Computational Engineering Mechatronics Mutation Optimization Research Paper Robotics Searching Software testing Statistical Physics and Dynamical Systems |
title | Mutation based test generation using search based social group optimization approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20based%20test%20generation%20using%20search%20based%20social%20group%20optimization%20approach&rft.jtitle=Evolutionary%20intelligence&rft.au=Rani,%20Shweta&rft.date=2022-09-01&rft.volume=15&rft.issue=3&rft.spage=2105&rft.epage=2114&rft.pages=2105-2114&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-021-00618-6&rft_dat=%3Cproquest_cross%3E2696496901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696496901&rft_id=info:pmid/&rfr_iscdi=true |