Action recognition algorithm based on skeletal joint data and adaptive time pyramid

Human action recognition technology plays an crucial role in the fields of video surveillance, video retrieval, sports medicine and human–computer interaction. Slow research and application of this technology limited to complex environments and plasticity of human action. As a new sensor, Kinect pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2022, Vol.16 (6), p.1615-1622
Hauptverfasser: Sima, Mingjun, Hou, Mingzheng, Zhang, Xin, Ding, Jianwei, Feng, Ziliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1622
container_issue 6
container_start_page 1615
container_title Signal, image and video processing
container_volume 16
creator Sima, Mingjun
Hou, Mingzheng
Zhang, Xin
Ding, Jianwei
Feng, Ziliang
description Human action recognition technology plays an crucial role in the fields of video surveillance, video retrieval, sports medicine and human–computer interaction. Slow research and application of this technology limited to complex environments and plasticity of human action. As a new sensor, Kinect provides a new idea for human action recognition, which can synchronously obtain data of skeleton joint points from target. In this paper, we propose a human action recognition method using skeletal joints data. The motion and static information of human action are firstly fused as feature and skeletal vector is used to construct motion model which can describe variation of human action after feature extraction. Then the model is introduced into adaptive time pyramid to capture global and local information; furthermore, skeletal joints feature in each period of time is processed. Finally, kernel extreme learning machine is used for human action recognition. Experimental results show that our work successfully achieves skeleton information in comparison with other methods.
doi_str_mv 10.1007/s11760-021-02116-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696496813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696496813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-83bb36fb8e971536ffd0f8e17529f19a393407dac8cfaea1bf59bc6462e3d1263</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59XMps0mx1L8goIH9RxmN0lN3Y-apEL_vbErenNgmJfhfWfgIeQS2DUwVt1EgEqwgpXw3SAKdUImIAUvoAI4_dWMn5NZjFuWi5eVFHJCnpdN8kNPg22GTe-PGtvNEHx662iN0RqaV_HdtjZhS7eD7xM1mJBibyga3CX_aWnynaW7Q8DOmwty5rCNdvYzp-T17vZl9VCsn-4fV8t10XBQqZC8rrlwtbSqgkVWzjAnLVSLUjlQyBWfs8pgIxuHFqF2C1U3Yi5Kyw2Ugk_J1Xh3F4aPvY1Jb4d96PNLXQol5kpI4NlVjq4mDDEG6_Qu-A7DQQPT3_z0yE9ndvrIT6sc4mMoZnO_seHv9D-pLwnmcy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696496813</pqid></control><display><type>article</type><title>Action recognition algorithm based on skeletal joint data and adaptive time pyramid</title><source>SpringerLink Journals</source><creator>Sima, Mingjun ; Hou, Mingzheng ; Zhang, Xin ; Ding, Jianwei ; Feng, Ziliang</creator><creatorcontrib>Sima, Mingjun ; Hou, Mingzheng ; Zhang, Xin ; Ding, Jianwei ; Feng, Ziliang</creatorcontrib><description>Human action recognition technology plays an crucial role in the fields of video surveillance, video retrieval, sports medicine and human–computer interaction. Slow research and application of this technology limited to complex environments and plasticity of human action. As a new sensor, Kinect provides a new idea for human action recognition, which can synchronously obtain data of skeleton joint points from target. In this paper, we propose a human action recognition method using skeletal joints data. The motion and static information of human action are firstly fused as feature and skeletal vector is used to construct motion model which can describe variation of human action after feature extraction. Then the model is introduced into adaptive time pyramid to capture global and local information; furthermore, skeletal joints feature in each period of time is processed. Finally, kernel extreme learning machine is used for human action recognition. Experimental results show that our work successfully achieves skeleton information in comparison with other methods.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-021-02116-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial neural networks ; Computer Imaging ; Computer Science ; Feature extraction ; Human activity recognition ; Human motion ; Image Processing and Computer Vision ; Joints (anatomy) ; Machine learning ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Sports medicine ; Vision</subject><ispartof>Signal, image and video processing, 2022, Vol.16 (6), p.1615-1622</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-83bb36fb8e971536ffd0f8e17529f19a393407dac8cfaea1bf59bc6462e3d1263</citedby><cites>FETCH-LOGICAL-c319t-83bb36fb8e971536ffd0f8e17529f19a393407dac8cfaea1bf59bc6462e3d1263</cites><orcidid>0000-0002-5930-5031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-021-02116-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-021-02116-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sima, Mingjun</creatorcontrib><creatorcontrib>Hou, Mingzheng</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Ding, Jianwei</creatorcontrib><creatorcontrib>Feng, Ziliang</creatorcontrib><title>Action recognition algorithm based on skeletal joint data and adaptive time pyramid</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Human action recognition technology plays an crucial role in the fields of video surveillance, video retrieval, sports medicine and human–computer interaction. Slow research and application of this technology limited to complex environments and plasticity of human action. As a new sensor, Kinect provides a new idea for human action recognition, which can synchronously obtain data of skeleton joint points from target. In this paper, we propose a human action recognition method using skeletal joints data. The motion and static information of human action are firstly fused as feature and skeletal vector is used to construct motion model which can describe variation of human action after feature extraction. Then the model is introduced into adaptive time pyramid to capture global and local information; furthermore, skeletal joints feature in each period of time is processed. Finally, kernel extreme learning machine is used for human action recognition. Experimental results show that our work successfully achieves skeleton information in comparison with other methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Image Processing and Computer Vision</subject><subject>Joints (anatomy)</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Sports medicine</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59XMps0mx1L8goIH9RxmN0lN3Y-apEL_vbErenNgmJfhfWfgIeQS2DUwVt1EgEqwgpXw3SAKdUImIAUvoAI4_dWMn5NZjFuWi5eVFHJCnpdN8kNPg22GTe-PGtvNEHx662iN0RqaV_HdtjZhS7eD7xM1mJBibyga3CX_aWnynaW7Q8DOmwty5rCNdvYzp-T17vZl9VCsn-4fV8t10XBQqZC8rrlwtbSqgkVWzjAnLVSLUjlQyBWfs8pgIxuHFqF2C1U3Yi5Kyw2Ugk_J1Xh3F4aPvY1Jb4d96PNLXQol5kpI4NlVjq4mDDEG6_Qu-A7DQQPT3_z0yE9ndvrIT6sc4mMoZnO_seHv9D-pLwnmcy0</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sima, Mingjun</creator><creator>Hou, Mingzheng</creator><creator>Zhang, Xin</creator><creator>Ding, Jianwei</creator><creator>Feng, Ziliang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5930-5031</orcidid></search><sort><creationdate>2022</creationdate><title>Action recognition algorithm based on skeletal joint data and adaptive time pyramid</title><author>Sima, Mingjun ; Hou, Mingzheng ; Zhang, Xin ; Ding, Jianwei ; Feng, Ziliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-83bb36fb8e971536ffd0f8e17529f19a393407dac8cfaea1bf59bc6462e3d1263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Image Processing and Computer Vision</topic><topic>Joints (anatomy)</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Sports medicine</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sima, Mingjun</creatorcontrib><creatorcontrib>Hou, Mingzheng</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Ding, Jianwei</creatorcontrib><creatorcontrib>Feng, Ziliang</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sima, Mingjun</au><au>Hou, Mingzheng</au><au>Zhang, Xin</au><au>Ding, Jianwei</au><au>Feng, Ziliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Action recognition algorithm based on skeletal joint data and adaptive time pyramid</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2022</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>1615</spage><epage>1622</epage><pages>1615-1622</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Human action recognition technology plays an crucial role in the fields of video surveillance, video retrieval, sports medicine and human–computer interaction. Slow research and application of this technology limited to complex environments and plasticity of human action. As a new sensor, Kinect provides a new idea for human action recognition, which can synchronously obtain data of skeleton joint points from target. In this paper, we propose a human action recognition method using skeletal joints data. The motion and static information of human action are firstly fused as feature and skeletal vector is used to construct motion model which can describe variation of human action after feature extraction. Then the model is introduced into adaptive time pyramid to capture global and local information; furthermore, skeletal joints feature in each period of time is processed. Finally, kernel extreme learning machine is used for human action recognition. Experimental results show that our work successfully achieves skeleton information in comparison with other methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-021-02116-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5930-5031</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2022, Vol.16 (6), p.1615-1622
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2696496813
source SpringerLink Journals
subjects Algorithms
Artificial neural networks
Computer Imaging
Computer Science
Feature extraction
Human activity recognition
Human motion
Image Processing and Computer Vision
Joints (anatomy)
Machine learning
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Sports medicine
Vision
title Action recognition algorithm based on skeletal joint data and adaptive time pyramid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Action%20recognition%20algorithm%20based%20on%20skeletal%20joint%20data%20and%20adaptive%20time%20pyramid&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Sima,%20Mingjun&rft.date=2022&rft.volume=16&rft.issue=6&rft.spage=1615&rft.epage=1622&rft.pages=1615-1622&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-021-02116-9&rft_dat=%3Cproquest_cross%3E2696496813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696496813&rft_id=info:pmid/&rfr_iscdi=true