Competitive algorithm for scheduling of sharing machines with rental discount
This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without kno...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2022-08, Vol.44 (1), p.414-434 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 434 |
---|---|
container_issue | 1 |
container_start_page | 414 |
container_title | Journal of combinatorial optimization |
container_volume | 44 |
creator | Xu, Yinfeng Zhi, Rongteng Zheng, Feifeng Liu, Ming |
description | This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without knowing future jobs. Each job is with one unit of processing time. One manufacturer leases a limited number of identical machines over a manufacturing resource sharing platform, and pays a rental fee of
α
per time unit for processing jobs. Especially, when the time duration of a leasing machine reaches the discount time point, the manufacturer will get a discount for further processing jobs on the machine, i.e., the unit time rental cost is
α
β
, where
β
=
1
/
2
is the discount coefficient. The objective function is the sum of makespan and the rental cost of all the sharing machines. When the unit time rental cost
α
≥
2
, we first provide the lower bound of objective value of an optimal schedule in the offline version and prove a lower bound of 1.093 for the problem. Based on the analysis of the offline solution, we present a deterministic online algorithm
LS-RD
with a tight competitive ratio of 3/2. When
1
≤
α
<
2
, we prove that the competitive ratios of algorithm
LIST
are 1 and 2 for the case of
m
=
2
and
m
→
∞
, respectively. For the general rental discount
0
<
β
≤
1
, we give the relevant results for offline and online solutions. |
doi_str_mv | 10.1007/s10878-021-00836-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696496801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696496801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7b6fce0f57d2a19fe0647af259209eed753cb5fddf5898d0616558c61a7c115c3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWmA3HTn0bUcVNKmKB2XIdu0mVxMFOQLw9KUFiYzr_8F90PoQuKVxTAHmTKSipCDBKAFQhiD5CC8plQZhS4njShWJEaOCn6CznPQBMerVAz-vY9n6oh_rDY9vsYqqHqsUhJpxd5cuxqbsdjgHnyqaDbK2r6s5n_DkZcfLdYBtc1tnFsRvO0UmwTfYXv3eJ3u7vXtePZPPy8LS-3RBXUD0QuRXBeQhclsxSHTyIlbSBcc1Ae19KXrgtD2UZuNKqBEEF58oJaqWjlLtiia7m3j7F99HnwezjmLpp0jChxUoLBXRysdnlUsw5-WD6VLc2fRkK5oDNzNjMhM38YDN6ChVzKPeHf336q_4n9Q2hB3Ds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696496801</pqid></control><display><type>article</type><title>Competitive algorithm for scheduling of sharing machines with rental discount</title><source>SpringerNature Complete Journals</source><creator>Xu, Yinfeng ; Zhi, Rongteng ; Zheng, Feifeng ; Liu, Ming</creator><creatorcontrib>Xu, Yinfeng ; Zhi, Rongteng ; Zheng, Feifeng ; Liu, Ming</creatorcontrib><description>This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without knowing future jobs. Each job is with one unit of processing time. One manufacturer leases a limited number of identical machines over a manufacturing resource sharing platform, and pays a rental fee of
α
per time unit for processing jobs. Especially, when the time duration of a leasing machine reaches the discount time point, the manufacturer will get a discount for further processing jobs on the machine, i.e., the unit time rental cost is
α
β
, where
β
=
1
/
2
is the discount coefficient. The objective function is the sum of makespan and the rental cost of all the sharing machines. When the unit time rental cost
α
≥
2
, we first provide the lower bound of objective value of an optimal schedule in the offline version and prove a lower bound of 1.093 for the problem. Based on the analysis of the offline solution, we present a deterministic online algorithm
LS-RD
with a tight competitive ratio of 3/2. When
1
≤
α
<
2
, we prove that the competitive ratios of algorithm
LIST
are 1 and 2 for the case of
m
=
2
and
m
→
∞
, respectively. For the general rental discount
0
<
β
≤
1
, we give the relevant results for offline and online solutions.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00836-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Combinatorics ; Convex and Discrete Geometry ; Job shops ; Leases ; Leasing ; Lower bounds ; Manufacturers ; Manufacturing ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Scheduling ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2022-08, Vol.44 (1), p.414-434</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7b6fce0f57d2a19fe0647af259209eed753cb5fddf5898d0616558c61a7c115c3</citedby><cites>FETCH-LOGICAL-c319t-7b6fce0f57d2a19fe0647af259209eed753cb5fddf5898d0616558c61a7c115c3</cites><orcidid>0000-0002-1059-1372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00836-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00836-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Yinfeng</creatorcontrib><creatorcontrib>Zhi, Rongteng</creatorcontrib><creatorcontrib>Zheng, Feifeng</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Competitive algorithm for scheduling of sharing machines with rental discount</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without knowing future jobs. Each job is with one unit of processing time. One manufacturer leases a limited number of identical machines over a manufacturing resource sharing platform, and pays a rental fee of
α
per time unit for processing jobs. Especially, when the time duration of a leasing machine reaches the discount time point, the manufacturer will get a discount for further processing jobs on the machine, i.e., the unit time rental cost is
α
β
, where
β
=
1
/
2
is the discount coefficient. The objective function is the sum of makespan and the rental cost of all the sharing machines. When the unit time rental cost
α
≥
2
, we first provide the lower bound of objective value of an optimal schedule in the offline version and prove a lower bound of 1.093 for the problem. Based on the analysis of the offline solution, we present a deterministic online algorithm
LS-RD
with a tight competitive ratio of 3/2. When
1
≤
α
<
2
, we prove that the competitive ratios of algorithm
LIST
are 1 and 2 for the case of
m
=
2
and
m
→
∞
, respectively. For the general rental discount
0
<
β
≤
1
, we give the relevant results for offline and online solutions.</description><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Job shops</subject><subject>Leases</subject><subject>Leasing</subject><subject>Lower bounds</subject><subject>Manufacturers</subject><subject>Manufacturing</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Scheduling</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWmA3HTn0bUcVNKmKB2XIdu0mVxMFOQLw9KUFiYzr_8F90PoQuKVxTAHmTKSipCDBKAFQhiD5CC8plQZhS4njShWJEaOCn6CznPQBMerVAz-vY9n6oh_rDY9vsYqqHqsUhJpxd5cuxqbsdjgHnyqaDbK2r6s5n_DkZcfLdYBtc1tnFsRvO0UmwTfYXv3eJ3u7vXtePZPPy8LS-3RBXUD0QuRXBeQhclsxSHTyIlbSBcc1Ae19KXrgtD2UZuNKqBEEF58oJaqWjlLtiia7m3j7F99HnwezjmLpp0jChxUoLBXRysdnlUsw5-WD6VLc2fRkK5oDNzNjMhM38YDN6ChVzKPeHf336q_4n9Q2hB3Ds</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xu, Yinfeng</creator><creator>Zhi, Rongteng</creator><creator>Zheng, Feifeng</creator><creator>Liu, Ming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1059-1372</orcidid></search><sort><creationdate>20220801</creationdate><title>Competitive algorithm for scheduling of sharing machines with rental discount</title><author>Xu, Yinfeng ; Zhi, Rongteng ; Zheng, Feifeng ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7b6fce0f57d2a19fe0647af259209eed753cb5fddf5898d0616558c61a7c115c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Job shops</topic><topic>Leases</topic><topic>Leasing</topic><topic>Lower bounds</topic><topic>Manufacturers</topic><topic>Manufacturing</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Scheduling</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yinfeng</creatorcontrib><creatorcontrib>Zhi, Rongteng</creatorcontrib><creatorcontrib>Zheng, Feifeng</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yinfeng</au><au>Zhi, Rongteng</au><au>Zheng, Feifeng</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competitive algorithm for scheduling of sharing machines with rental discount</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>44</volume><issue>1</issue><spage>414</spage><epage>434</epage><pages>414-434</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without knowing future jobs. Each job is with one unit of processing time. One manufacturer leases a limited number of identical machines over a manufacturing resource sharing platform, and pays a rental fee of
α
per time unit for processing jobs. Especially, when the time duration of a leasing machine reaches the discount time point, the manufacturer will get a discount for further processing jobs on the machine, i.e., the unit time rental cost is
α
β
, where
β
=
1
/
2
is the discount coefficient. The objective function is the sum of makespan and the rental cost of all the sharing machines. When the unit time rental cost
α
≥
2
, we first provide the lower bound of objective value of an optimal schedule in the offline version and prove a lower bound of 1.093 for the problem. Based on the analysis of the offline solution, we present a deterministic online algorithm
LS-RD
with a tight competitive ratio of 3/2. When
1
≤
α
<
2
, we prove that the competitive ratios of algorithm
LIST
are 1 and 2 for the case of
m
=
2
and
m
→
∞
, respectively. For the general rental discount
0
<
β
≤
1
, we give the relevant results for offline and online solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00836-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1059-1372</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-6905 |
ispartof | Journal of combinatorial optimization, 2022-08, Vol.44 (1), p.414-434 |
issn | 1382-6905 1573-2886 |
language | eng |
recordid | cdi_proquest_journals_2696496801 |
source | SpringerNature Complete Journals |
subjects | Algorithms Combinatorics Convex and Discrete Geometry Job shops Leases Leasing Lower bounds Manufacturers Manufacturing Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Scheduling Theory of Computation |
title | Competitive algorithm for scheduling of sharing machines with rental discount |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competitive%20algorithm%20for%20scheduling%20of%20sharing%20machines%20with%20rental%20discount&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Xu,%20Yinfeng&rft.date=2022-08-01&rft.volume=44&rft.issue=1&rft.spage=414&rft.epage=434&rft.pages=414-434&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00836-9&rft_dat=%3Cproquest_cross%3E2696496801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696496801&rft_id=info:pmid/&rfr_iscdi=true |