Competitive algorithm for scheduling of sharing machines with rental discount

This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2022-08, Vol.44 (1), p.414-434
Hauptverfasser: Xu, Yinfeng, Zhi, Rongteng, Zheng, Feifeng, Liu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 1
container_start_page 414
container_title Journal of combinatorial optimization
container_volume 44
creator Xu, Yinfeng
Zhi, Rongteng
Zheng, Feifeng
Liu, Ming
description This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without knowing future jobs. Each job is with one unit of processing time. One manufacturer leases a limited number of identical machines over a manufacturing resource sharing platform, and pays a rental fee of α per time unit for processing jobs. Especially, when the time duration of a leasing machine reaches the discount time point, the manufacturer will get a discount for further processing jobs on the machine, i.e., the unit time rental cost is α β , where β = 1 / 2 is the discount coefficient. The objective function is the sum of makespan and the rental cost of all the sharing machines. When the unit time rental cost α ≥ 2 , we first provide the lower bound of objective value of an optimal schedule in the offline version and prove a lower bound of 1.093 for the problem. Based on the analysis of the offline solution, we present a deterministic online algorithm LS-RD with a tight competitive ratio of 3/2. When 1 ≤ α < 2 , we prove that the competitive ratios of algorithm LIST are 1 and 2 for the case of m = 2 and m → ∞ , respectively. For the general rental discount 0 < β ≤ 1 , we give the relevant results for offline and online solutions.
doi_str_mv 10.1007/s10878-021-00836-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696496801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696496801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7b6fce0f57d2a19fe0647af259209eed753cb5fddf5898d0616558c61a7c115c3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWmA3HTn0bUcVNKmKB2XIdu0mVxMFOQLw9KUFiYzr_8F90PoQuKVxTAHmTKSipCDBKAFQhiD5CC8plQZhS4njShWJEaOCn6CznPQBMerVAz-vY9n6oh_rDY9vsYqqHqsUhJpxd5cuxqbsdjgHnyqaDbK2r6s5n_DkZcfLdYBtc1tnFsRvO0UmwTfYXv3eJ3u7vXtePZPPy8LS-3RBXUD0QuRXBeQhclsxSHTyIlbSBcc1Ae19KXrgtD2UZuNKqBEEF58oJaqWjlLtiia7m3j7F99HnwezjmLpp0jChxUoLBXRysdnlUsw5-WD6VLc2fRkK5oDNzNjMhM38YDN6ChVzKPeHf336q_4n9Q2hB3Ds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696496801</pqid></control><display><type>article</type><title>Competitive algorithm for scheduling of sharing machines with rental discount</title><source>SpringerNature Complete Journals</source><creator>Xu, Yinfeng ; Zhi, Rongteng ; Zheng, Feifeng ; Liu, Ming</creator><creatorcontrib>Xu, Yinfeng ; Zhi, Rongteng ; Zheng, Feifeng ; Liu, Ming</creatorcontrib><description>This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without knowing future jobs. Each job is with one unit of processing time. One manufacturer leases a limited number of identical machines over a manufacturing resource sharing platform, and pays a rental fee of α per time unit for processing jobs. Especially, when the time duration of a leasing machine reaches the discount time point, the manufacturer will get a discount for further processing jobs on the machine, i.e., the unit time rental cost is α β , where β = 1 / 2 is the discount coefficient. The objective function is the sum of makespan and the rental cost of all the sharing machines. When the unit time rental cost α ≥ 2 , we first provide the lower bound of objective value of an optimal schedule in the offline version and prove a lower bound of 1.093 for the problem. Based on the analysis of the offline solution, we present a deterministic online algorithm LS-RD with a tight competitive ratio of 3/2. When 1 ≤ α &lt; 2 , we prove that the competitive ratios of algorithm LIST are 1 and 2 for the case of m = 2 and m → ∞ , respectively. For the general rental discount 0 &lt; β ≤ 1 , we give the relevant results for offline and online solutions.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00836-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Combinatorics ; Convex and Discrete Geometry ; Job shops ; Leases ; Leasing ; Lower bounds ; Manufacturers ; Manufacturing ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Scheduling ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2022-08, Vol.44 (1), p.414-434</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7b6fce0f57d2a19fe0647af259209eed753cb5fddf5898d0616558c61a7c115c3</citedby><cites>FETCH-LOGICAL-c319t-7b6fce0f57d2a19fe0647af259209eed753cb5fddf5898d0616558c61a7c115c3</cites><orcidid>0000-0002-1059-1372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00836-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00836-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Yinfeng</creatorcontrib><creatorcontrib>Zhi, Rongteng</creatorcontrib><creatorcontrib>Zheng, Feifeng</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Competitive algorithm for scheduling of sharing machines with rental discount</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without knowing future jobs. Each job is with one unit of processing time. One manufacturer leases a limited number of identical machines over a manufacturing resource sharing platform, and pays a rental fee of α per time unit for processing jobs. Especially, when the time duration of a leasing machine reaches the discount time point, the manufacturer will get a discount for further processing jobs on the machine, i.e., the unit time rental cost is α β , where β = 1 / 2 is the discount coefficient. The objective function is the sum of makespan and the rental cost of all the sharing machines. When the unit time rental cost α ≥ 2 , we first provide the lower bound of objective value of an optimal schedule in the offline version and prove a lower bound of 1.093 for the problem. Based on the analysis of the offline solution, we present a deterministic online algorithm LS-RD with a tight competitive ratio of 3/2. When 1 ≤ α &lt; 2 , we prove that the competitive ratios of algorithm LIST are 1 and 2 for the case of m = 2 and m → ∞ , respectively. For the general rental discount 0 &lt; β ≤ 1 , we give the relevant results for offline and online solutions.</description><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Job shops</subject><subject>Leases</subject><subject>Leasing</subject><subject>Lower bounds</subject><subject>Manufacturers</subject><subject>Manufacturing</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Scheduling</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWmA3HTn0bUcVNKmKB2XIdu0mVxMFOQLw9KUFiYzr_8F90PoQuKVxTAHmTKSipCDBKAFQhiD5CC8plQZhS4njShWJEaOCn6CznPQBMerVAz-vY9n6oh_rDY9vsYqqHqsUhJpxd5cuxqbsdjgHnyqaDbK2r6s5n_DkZcfLdYBtc1tnFsRvO0UmwTfYXv3eJ3u7vXtePZPPy8LS-3RBXUD0QuRXBeQhclsxSHTyIlbSBcc1Ae19KXrgtD2UZuNKqBEEF58oJaqWjlLtiia7m3j7F99HnwezjmLpp0jChxUoLBXRysdnlUsw5-WD6VLc2fRkK5oDNzNjMhM38YDN6ChVzKPeHf336q_4n9Q2hB3Ds</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xu, Yinfeng</creator><creator>Zhi, Rongteng</creator><creator>Zheng, Feifeng</creator><creator>Liu, Ming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1059-1372</orcidid></search><sort><creationdate>20220801</creationdate><title>Competitive algorithm for scheduling of sharing machines with rental discount</title><author>Xu, Yinfeng ; Zhi, Rongteng ; Zheng, Feifeng ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7b6fce0f57d2a19fe0647af259209eed753cb5fddf5898d0616558c61a7c115c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Job shops</topic><topic>Leases</topic><topic>Leasing</topic><topic>Lower bounds</topic><topic>Manufacturers</topic><topic>Manufacturing</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Scheduling</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yinfeng</creatorcontrib><creatorcontrib>Zhi, Rongteng</creatorcontrib><creatorcontrib>Zheng, Feifeng</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yinfeng</au><au>Zhi, Rongteng</au><au>Zheng, Feifeng</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competitive algorithm for scheduling of sharing machines with rental discount</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>44</volume><issue>1</issue><spage>414</spage><epage>434</epage><pages>414-434</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>This paper addresses the online parallel machine scheduling problem with machine leasing discount. Rental cost discount is a common phenomenon in the sharing manufacturing environment. In this problem, jobs arrive one by one over-list and must be allocated irrevocably upon their arrivals without knowing future jobs. Each job is with one unit of processing time. One manufacturer leases a limited number of identical machines over a manufacturing resource sharing platform, and pays a rental fee of α per time unit for processing jobs. Especially, when the time duration of a leasing machine reaches the discount time point, the manufacturer will get a discount for further processing jobs on the machine, i.e., the unit time rental cost is α β , where β = 1 / 2 is the discount coefficient. The objective function is the sum of makespan and the rental cost of all the sharing machines. When the unit time rental cost α ≥ 2 , we first provide the lower bound of objective value of an optimal schedule in the offline version and prove a lower bound of 1.093 for the problem. Based on the analysis of the offline solution, we present a deterministic online algorithm LS-RD with a tight competitive ratio of 3/2. When 1 ≤ α &lt; 2 , we prove that the competitive ratios of algorithm LIST are 1 and 2 for the case of m = 2 and m → ∞ , respectively. For the general rental discount 0 &lt; β ≤ 1 , we give the relevant results for offline and online solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00836-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1059-1372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2022-08, Vol.44 (1), p.414-434
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_2696496801
source SpringerNature Complete Journals
subjects Algorithms
Combinatorics
Convex and Discrete Geometry
Job shops
Leases
Leasing
Lower bounds
Manufacturers
Manufacturing
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Scheduling
Theory of Computation
title Competitive algorithm for scheduling of sharing machines with rental discount
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competitive%20algorithm%20for%20scheduling%20of%20sharing%20machines%20with%20rental%20discount&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Xu,%20Yinfeng&rft.date=2022-08-01&rft.volume=44&rft.issue=1&rft.spage=414&rft.epage=434&rft.pages=414-434&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00836-9&rft_dat=%3Cproquest_cross%3E2696496801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696496801&rft_id=info:pmid/&rfr_iscdi=true