Sea state from ocean video with singular spectrum analysis and extended Kalman filter

A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2022-09, Vol.16 (6), p.1497-1504
Hauptverfasser: Loizou, Antonis, Christmas, Jacqueline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1504
container_issue 6
container_start_page 1497
container_title Signal, image and video processing
container_volume 16
creator Loizou, Antonis
Christmas, Jacqueline
description A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency output into a significant wave height estimation.
doi_str_mv 10.1007/s11760-021-02103-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696496788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696496788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-651dca442636125df09177b72260ed00464b5952fa79b893cb80790a5b8a7c323</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA69GbZCaPpRRfWHChXYfMJFOnzKMmGbX_3tQR3Xnhcs_inMPlQ-icwCUBEFeBEMEhA0oOCyyDIzQjkrOMCEKOfzWwU7QIYQtpGBWSyxlaPzuDQzTR4doPHR4qZ3r83lg34I8mvuLQ9JuxNR6HnauiHztsetPuQxOSsNh9RtdbZ_GjabuUrJs2On-GTmrTBrf4uXO0vr15Wd5nq6e7h-X1KqsYZzHjBbGVyXPKGSe0sDUoIkQpKOXgLEDO87JQBa2NUKVUrColCAWmKKURFaNsji6m3p0f3kYXot4Oo0__BU254rniQsrkopOr8kMI3tV655vO-L0moA8E9URQJ3r6m6CGFGJTKCRzv3H-r_qf1Be_lXIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696496788</pqid></control><display><type>article</type><title>Sea state from ocean video with singular spectrum analysis and extended Kalman filter</title><source>SpringerLink Journals</source><creator>Loizou, Antonis ; Christmas, Jacqueline</creator><creatorcontrib>Loizou, Antonis ; Christmas, Jacqueline</creatorcontrib><description>A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency output into a significant wave height estimation.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-021-02103-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Imaging ; Computer Science ; Empirical analysis ; Estimation ; Extended Kalman filter ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Sea states ; Signal,Image and Speech Processing ; Spectrum analysis ; Vision ; Wave height</subject><ispartof>Signal, image and video processing, 2022-09, Vol.16 (6), p.1497-1504</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-651dca442636125df09177b72260ed00464b5952fa79b893cb80790a5b8a7c323</citedby><cites>FETCH-LOGICAL-c363t-651dca442636125df09177b72260ed00464b5952fa79b893cb80790a5b8a7c323</cites><orcidid>0000-0001-8447-4120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-021-02103-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-021-02103-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Loizou, Antonis</creatorcontrib><creatorcontrib>Christmas, Jacqueline</creatorcontrib><title>Sea state from ocean video with singular spectrum analysis and extended Kalman filter</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency output into a significant wave height estimation.</description><subject>Algorithms</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Empirical analysis</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Sea states</subject><subject>Signal,Image and Speech Processing</subject><subject>Spectrum analysis</subject><subject>Vision</subject><subject>Wave height</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKuA69GbZCaPpRRfWHChXYfMJFOnzKMmGbX_3tQR3Xnhcs_inMPlQ-icwCUBEFeBEMEhA0oOCyyDIzQjkrOMCEKOfzWwU7QIYQtpGBWSyxlaPzuDQzTR4doPHR4qZ3r83lg34I8mvuLQ9JuxNR6HnauiHztsetPuQxOSsNh9RtdbZ_GjabuUrJs2On-GTmrTBrf4uXO0vr15Wd5nq6e7h-X1KqsYZzHjBbGVyXPKGSe0sDUoIkQpKOXgLEDO87JQBa2NUKVUrColCAWmKKURFaNsji6m3p0f3kYXot4Oo0__BU254rniQsrkopOr8kMI3tV655vO-L0moA8E9URQJ3r6m6CGFGJTKCRzv3H-r_qf1Be_lXIl</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Loizou, Antonis</creator><creator>Christmas, Jacqueline</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8447-4120</orcidid></search><sort><creationdate>20220901</creationdate><title>Sea state from ocean video with singular spectrum analysis and extended Kalman filter</title><author>Loizou, Antonis ; Christmas, Jacqueline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-651dca442636125df09177b72260ed00464b5952fa79b893cb80790a5b8a7c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Empirical analysis</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Sea states</topic><topic>Signal,Image and Speech Processing</topic><topic>Spectrum analysis</topic><topic>Vision</topic><topic>Wave height</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loizou, Antonis</creatorcontrib><creatorcontrib>Christmas, Jacqueline</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loizou, Antonis</au><au>Christmas, Jacqueline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea state from ocean video with singular spectrum analysis and extended Kalman filter</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>1497</spage><epage>1504</epage><pages>1497-1504</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency output into a significant wave height estimation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-021-02103-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8447-4120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2022-09, Vol.16 (6), p.1497-1504
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2696496788
source SpringerLink Journals
subjects Algorithms
Computer Imaging
Computer Science
Empirical analysis
Estimation
Extended Kalman filter
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Sea states
Signal,Image and Speech Processing
Spectrum analysis
Vision
Wave height
title Sea state from ocean video with singular spectrum analysis and extended Kalman filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20state%20from%20ocean%20video%20with%20singular%20spectrum%20analysis%20and%20extended%20Kalman%20filter&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Loizou,%20Antonis&rft.date=2022-09-01&rft.volume=16&rft.issue=6&rft.spage=1497&rft.epage=1504&rft.pages=1497-1504&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-021-02103-0&rft_dat=%3Cproquest_cross%3E2696496788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696496788&rft_id=info:pmid/&rfr_iscdi=true