Sea state from ocean video with singular spectrum analysis and extended Kalman filter
A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2022-09, Vol.16 (6), p.1497-1504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1504 |
---|---|
container_issue | 6 |
container_start_page | 1497 |
container_title | Signal, image and video processing |
container_volume | 16 |
creator | Loizou, Antonis Christmas, Jacqueline |
description | A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency output into a significant wave height estimation. |
doi_str_mv | 10.1007/s11760-021-02103-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696496788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696496788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-651dca442636125df09177b72260ed00464b5952fa79b893cb80790a5b8a7c323</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA69GbZCaPpRRfWHChXYfMJFOnzKMmGbX_3tQR3Xnhcs_inMPlQ-icwCUBEFeBEMEhA0oOCyyDIzQjkrOMCEKOfzWwU7QIYQtpGBWSyxlaPzuDQzTR4doPHR4qZ3r83lg34I8mvuLQ9JuxNR6HnauiHztsetPuQxOSsNh9RtdbZ_GjabuUrJs2On-GTmrTBrf4uXO0vr15Wd5nq6e7h-X1KqsYZzHjBbGVyXPKGSe0sDUoIkQpKOXgLEDO87JQBa2NUKVUrColCAWmKKURFaNsji6m3p0f3kYXot4Oo0__BU254rniQsrkopOr8kMI3tV655vO-L0moA8E9URQJ3r6m6CGFGJTKCRzv3H-r_qf1Be_lXIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696496788</pqid></control><display><type>article</type><title>Sea state from ocean video with singular spectrum analysis and extended Kalman filter</title><source>SpringerLink Journals</source><creator>Loizou, Antonis ; Christmas, Jacqueline</creator><creatorcontrib>Loizou, Antonis ; Christmas, Jacqueline</creatorcontrib><description>A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency output into a significant wave height estimation.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-021-02103-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Computer Imaging ; Computer Science ; Empirical analysis ; Estimation ; Extended Kalman filter ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Sea states ; Signal,Image and Speech Processing ; Spectrum analysis ; Vision ; Wave height</subject><ispartof>Signal, image and video processing, 2022-09, Vol.16 (6), p.1497-1504</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-651dca442636125df09177b72260ed00464b5952fa79b893cb80790a5b8a7c323</citedby><cites>FETCH-LOGICAL-c363t-651dca442636125df09177b72260ed00464b5952fa79b893cb80790a5b8a7c323</cites><orcidid>0000-0001-8447-4120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-021-02103-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-021-02103-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Loizou, Antonis</creatorcontrib><creatorcontrib>Christmas, Jacqueline</creatorcontrib><title>Sea state from ocean video with singular spectrum analysis and extended Kalman filter</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency output into a significant wave height estimation.</description><subject>Algorithms</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Empirical analysis</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Sea states</subject><subject>Signal,Image and Speech Processing</subject><subject>Spectrum analysis</subject><subject>Vision</subject><subject>Wave height</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKuA69GbZCaPpRRfWHChXYfMJFOnzKMmGbX_3tQR3Xnhcs_inMPlQ-icwCUBEFeBEMEhA0oOCyyDIzQjkrOMCEKOfzWwU7QIYQtpGBWSyxlaPzuDQzTR4doPHR4qZ3r83lg34I8mvuLQ9JuxNR6HnauiHztsetPuQxOSsNh9RtdbZ_GjabuUrJs2On-GTmrTBrf4uXO0vr15Wd5nq6e7h-X1KqsYZzHjBbGVyXPKGSe0sDUoIkQpKOXgLEDO87JQBa2NUKVUrColCAWmKKURFaNsji6m3p0f3kYXot4Oo0__BU254rniQsrkopOr8kMI3tV655vO-L0moA8E9URQJ3r6m6CGFGJTKCRzv3H-r_qf1Be_lXIl</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Loizou, Antonis</creator><creator>Christmas, Jacqueline</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8447-4120</orcidid></search><sort><creationdate>20220901</creationdate><title>Sea state from ocean video with singular spectrum analysis and extended Kalman filter</title><author>Loizou, Antonis ; Christmas, Jacqueline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-651dca442636125df09177b72260ed00464b5952fa79b893cb80790a5b8a7c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Empirical analysis</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Sea states</topic><topic>Signal,Image and Speech Processing</topic><topic>Spectrum analysis</topic><topic>Vision</topic><topic>Wave height</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loizou, Antonis</creatorcontrib><creatorcontrib>Christmas, Jacqueline</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loizou, Antonis</au><au>Christmas, Jacqueline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea state from ocean video with singular spectrum analysis and extended Kalman filter</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>1497</spage><epage>1504</epage><pages>1497-1504</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency output into a significant wave height estimation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-021-02103-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8447-4120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2022-09, Vol.16 (6), p.1497-1504 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2696496788 |
source | SpringerLink Journals |
subjects | Algorithms Computer Imaging Computer Science Empirical analysis Estimation Extended Kalman filter Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Sea states Signal,Image and Speech Processing Spectrum analysis Vision Wave height |
title | Sea state from ocean video with singular spectrum analysis and extended Kalman filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20state%20from%20ocean%20video%20with%20singular%20spectrum%20analysis%20and%20extended%20Kalman%20filter&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Loizou,%20Antonis&rft.date=2022-09-01&rft.volume=16&rft.issue=6&rft.spage=1497&rft.epage=1504&rft.pages=1497-1504&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-021-02103-0&rft_dat=%3Cproquest_cross%3E2696496788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696496788&rft_id=info:pmid/&rfr_iscdi=true |