Partial permutohedra

Partial permutohedra are lattice polytopes which were recently introduced and studied by Heuer and Striker. For positive integers \(m\) and \(n\), the partial permutohedron \(\mathcal{P}(m,n)\) is the convex hull of all vectors in \(\{0,1,\ldots,n\}^m\) whose nonzero entries are distinct. We study t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Behrend, Roger E, Castillo, Federico, Chavez, Anastasia, Diaz-Lopez, Alexander, Escobar, Laura, Harris, Pamela E, Insko, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Behrend, Roger E
Castillo, Federico
Chavez, Anastasia
Diaz-Lopez, Alexander
Escobar, Laura
Harris, Pamela E
Insko, Erik
description Partial permutohedra are lattice polytopes which were recently introduced and studied by Heuer and Striker. For positive integers \(m\) and \(n\), the partial permutohedron \(\mathcal{P}(m,n)\) is the convex hull of all vectors in \(\{0,1,\ldots,n\}^m\) whose nonzero entries are distinct. We study the face lattice, volume and Ehrhart polynomial of \(\mathcal{P}(m,n)\), and our methods and results include the following. For any \(m\) and \(n\), we obtain a bijection between the nonempty faces of \(\mathcal{P}(m,n)\) and certain chains of subsets of \(\{1,\dots,m\}\), thereby confirming a conjecture of Heuer and Striker, and we then use this characterization of faces to obtain a closed expression for the \(h\)-polynomial of \(\mathcal{P}(m,n)\). For any \(m\) and \(n\) with \(n\ge m-1\), we use a pyramidal subdivision of \(\mathcal{P}(m,n)\) to establish a recursive formula for the normalized volume of \(\mathcal{P}(m,n)\), from which we then obtain closed expressions for this volume. We also use a sculpting process (in which \(\mathcal{P}(m,n)\) is reached by successively removing certain pieces from a simplex or hypercube) to obtain closed expressions for the Ehrhart polynomial of \(\mathcal{P}(m,n)\) with arbitrary \(m\) and fixed \(n\le 3\), the volume of \(\mathcal{P}(m,4)\) with arbitrary \(m\), and the Ehrhart polynomial of \(\mathcal{P}(m,n)\) with fixed \(m\le4\) and arbitrary \(n\ge m-1\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2696322683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696322683</sourcerecordid><originalsourceid>FETCH-proquest_journals_26963226833</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQCUgsKslMzFEoSC3KLS3Jz0hNKUrkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzNLM2MjIzMLY2PiVAEAwKUo9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696322683</pqid></control><display><type>article</type><title>Partial permutohedra</title><source>Freely Accessible Journals</source><creator>Behrend, Roger E ; Castillo, Federico ; Chavez, Anastasia ; Diaz-Lopez, Alexander ; Escobar, Laura ; Harris, Pamela E ; Insko, Erik</creator><creatorcontrib>Behrend, Roger E ; Castillo, Federico ; Chavez, Anastasia ; Diaz-Lopez, Alexander ; Escobar, Laura ; Harris, Pamela E ; Insko, Erik</creatorcontrib><description>Partial permutohedra are lattice polytopes which were recently introduced and studied by Heuer and Striker. For positive integers \(m\) and \(n\), the partial permutohedron \(\mathcal{P}(m,n)\) is the convex hull of all vectors in \(\{0,1,\ldots,n\}^m\) whose nonzero entries are distinct. We study the face lattice, volume and Ehrhart polynomial of \(\mathcal{P}(m,n)\), and our methods and results include the following. For any \(m\) and \(n\), we obtain a bijection between the nonempty faces of \(\mathcal{P}(m,n)\) and certain chains of subsets of \(\{1,\dots,m\}\), thereby confirming a conjecture of Heuer and Striker, and we then use this characterization of faces to obtain a closed expression for the \(h\)-polynomial of \(\mathcal{P}(m,n)\). For any \(m\) and \(n\) with \(n\ge m-1\), we use a pyramidal subdivision of \(\mathcal{P}(m,n)\) to establish a recursive formula for the normalized volume of \(\mathcal{P}(m,n)\), from which we then obtain closed expressions for this volume. We also use a sculpting process (in which \(\mathcal{P}(m,n)\) is reached by successively removing certain pieces from a simplex or hypercube) to obtain closed expressions for the Ehrhart polynomial of \(\mathcal{P}(m,n)\) with arbitrary \(m\) and fixed \(n\le 3\), the volume of \(\mathcal{P}(m,4)\) with arbitrary \(m\), and the Ehrhart polynomial of \(\mathcal{P}(m,n)\) with fixed \(m\le4\) and arbitrary \(n\ge m-1\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Hypercubes ; Polynomials ; Polytopes</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Behrend, Roger E</creatorcontrib><creatorcontrib>Castillo, Federico</creatorcontrib><creatorcontrib>Chavez, Anastasia</creatorcontrib><creatorcontrib>Diaz-Lopez, Alexander</creatorcontrib><creatorcontrib>Escobar, Laura</creatorcontrib><creatorcontrib>Harris, Pamela E</creatorcontrib><creatorcontrib>Insko, Erik</creatorcontrib><title>Partial permutohedra</title><title>arXiv.org</title><description>Partial permutohedra are lattice polytopes which were recently introduced and studied by Heuer and Striker. For positive integers \(m\) and \(n\), the partial permutohedron \(\mathcal{P}(m,n)\) is the convex hull of all vectors in \(\{0,1,\ldots,n\}^m\) whose nonzero entries are distinct. We study the face lattice, volume and Ehrhart polynomial of \(\mathcal{P}(m,n)\), and our methods and results include the following. For any \(m\) and \(n\), we obtain a bijection between the nonempty faces of \(\mathcal{P}(m,n)\) and certain chains of subsets of \(\{1,\dots,m\}\), thereby confirming a conjecture of Heuer and Striker, and we then use this characterization of faces to obtain a closed expression for the \(h\)-polynomial of \(\mathcal{P}(m,n)\). For any \(m\) and \(n\) with \(n\ge m-1\), we use a pyramidal subdivision of \(\mathcal{P}(m,n)\) to establish a recursive formula for the normalized volume of \(\mathcal{P}(m,n)\), from which we then obtain closed expressions for this volume. We also use a sculpting process (in which \(\mathcal{P}(m,n)\) is reached by successively removing certain pieces from a simplex or hypercube) to obtain closed expressions for the Ehrhart polynomial of \(\mathcal{P}(m,n)\) with arbitrary \(m\) and fixed \(n\le 3\), the volume of \(\mathcal{P}(m,4)\) with arbitrary \(m\), and the Ehrhart polynomial of \(\mathcal{P}(m,n)\) with fixed \(m\le4\) and arbitrary \(n\ge m-1\).</description><subject>Convexity</subject><subject>Hypercubes</subject><subject>Polynomials</subject><subject>Polytopes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQCUgsKslMzFEoSC3KLS3Jz0hNKUrkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzNLM2MjIzMLY2PiVAEAwKUo9A</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Behrend, Roger E</creator><creator>Castillo, Federico</creator><creator>Chavez, Anastasia</creator><creator>Diaz-Lopez, Alexander</creator><creator>Escobar, Laura</creator><creator>Harris, Pamela E</creator><creator>Insko, Erik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230220</creationdate><title>Partial permutohedra</title><author>Behrend, Roger E ; Castillo, Federico ; Chavez, Anastasia ; Diaz-Lopez, Alexander ; Escobar, Laura ; Harris, Pamela E ; Insko, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26963226833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convexity</topic><topic>Hypercubes</topic><topic>Polynomials</topic><topic>Polytopes</topic><toplevel>online_resources</toplevel><creatorcontrib>Behrend, Roger E</creatorcontrib><creatorcontrib>Castillo, Federico</creatorcontrib><creatorcontrib>Chavez, Anastasia</creatorcontrib><creatorcontrib>Diaz-Lopez, Alexander</creatorcontrib><creatorcontrib>Escobar, Laura</creatorcontrib><creatorcontrib>Harris, Pamela E</creatorcontrib><creatorcontrib>Insko, Erik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behrend, Roger E</au><au>Castillo, Federico</au><au>Chavez, Anastasia</au><au>Diaz-Lopez, Alexander</au><au>Escobar, Laura</au><au>Harris, Pamela E</au><au>Insko, Erik</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Partial permutohedra</atitle><jtitle>arXiv.org</jtitle><date>2023-02-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Partial permutohedra are lattice polytopes which were recently introduced and studied by Heuer and Striker. For positive integers \(m\) and \(n\), the partial permutohedron \(\mathcal{P}(m,n)\) is the convex hull of all vectors in \(\{0,1,\ldots,n\}^m\) whose nonzero entries are distinct. We study the face lattice, volume and Ehrhart polynomial of \(\mathcal{P}(m,n)\), and our methods and results include the following. For any \(m\) and \(n\), we obtain a bijection between the nonempty faces of \(\mathcal{P}(m,n)\) and certain chains of subsets of \(\{1,\dots,m\}\), thereby confirming a conjecture of Heuer and Striker, and we then use this characterization of faces to obtain a closed expression for the \(h\)-polynomial of \(\mathcal{P}(m,n)\). For any \(m\) and \(n\) with \(n\ge m-1\), we use a pyramidal subdivision of \(\mathcal{P}(m,n)\) to establish a recursive formula for the normalized volume of \(\mathcal{P}(m,n)\), from which we then obtain closed expressions for this volume. We also use a sculpting process (in which \(\mathcal{P}(m,n)\) is reached by successively removing certain pieces from a simplex or hypercube) to obtain closed expressions for the Ehrhart polynomial of \(\mathcal{P}(m,n)\) with arbitrary \(m\) and fixed \(n\le 3\), the volume of \(\mathcal{P}(m,4)\) with arbitrary \(m\), and the Ehrhart polynomial of \(\mathcal{P}(m,n)\) with fixed \(m\le4\) and arbitrary \(n\ge m-1\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2696322683
source Freely Accessible Journals
subjects Convexity
Hypercubes
Polynomials
Polytopes
title Partial permutohedra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Partial%20permutohedra&rft.jtitle=arXiv.org&rft.au=Behrend,%20Roger%20E&rft.date=2023-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2696322683%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696322683&rft_id=info:pmid/&rfr_iscdi=true