Design of optimal sand fences around a desert solar park—a case study from Phase IV of the Mohammed bin Rashid Al Maktoum Solar Park

Solar energy parks in desert areas must resist the encroachment of moving sand and burial by migrating dunes. It is therefore important to design economical, effective sand fences to protect the parks. Based on an analysis of wind regime data and the grain-size distribution of transported sands, fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2022-08, Vol.113 (1), p.673-697
Hauptverfasser: Yao, Zhengyi, Xiao, Jianhua, Xie, Xiaosong, Zhu, Haijun, Qu, Jianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 1
container_start_page 673
container_title Natural hazards (Dordrecht)
container_volume 113
creator Yao, Zhengyi
Xiao, Jianhua
Xie, Xiaosong
Zhu, Haijun
Qu, Jianjun
description Solar energy parks in desert areas must resist the encroachment of moving sand and burial by migrating dunes. It is therefore important to design economical, effective sand fences to protect the parks. Based on an analysis of wind regime data and the grain-size distribution of transported sands, field-measured sand fluxes, and theoretical calculations, we designed the form, height, and structure of such sand fences. The aeolian sand in the study area is uniformly graded fine sand with particles ranging in size from 0.063 to 0.250 mm. Drift potential averaged 646 VU (i.e., a high-energy wind environment) and dune migration averaged 11.9 m yr −1 . The vertical mass flux profiles of aeolian sand followed power functions. The sand quantity transported below 10 cm in height accounted for > 99.8% of the total, with most of the remainder transported above 20 cm. The yearly maximum depth of sand deposited at the sand fences ranged from 1.63 to 2.50 m for mobile dunes and from 0.84 to 1.08 m for flat land. The lateral pressure exerted on the sand fence by accumulated sand ranged from 4.9 to 9.2 kPa for mobile dunes and from 1.1 to 3.1 kPa for flat land. Our results suggest an optimal sand fence height of 2.0 to 2.5 m for areas with mobile dunes and 1.0 to 1.5 m for flat land. To conserve materials, the sand fence could be combined with a security fence or wind fence. Our results provide a reference for designing sand fences in sandy areas.
doi_str_mv 10.1007/s11069-022-05319-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695726162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695726162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b48cf14c47d7df6e68a4711bfaa3fff6c89db28bf4bffd929fea15d1c01a8e933</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6xGYh2wncSJl4i31ArES-ysSWw3LU1c7GTBjhVfwBfyJbgUiR2r0YzuPSMdQg4YPWKUFseBMSpkQjlPaJ4ymYgNMmJ5kSa0zOgmGVHJWUJT-rxNdkKYU8qY4HJEPs5MmE07cBbcsp-1uICAnQZrutoEQO-GuCFoE4zvIbgFeliif_l6_0SoMRgI_aDfwHrXwm2zOlw_rXB9Y2DiGmxbo6GadXCHoZlpOFnABF96N7Rw_0O7jbQ9smVxEcz-79wljxfnD6dXyfjm8vr0ZJzUPJN9UmVlbVlWZ4UutBVGlJgVjFUWMbXWirqUuuJlZbPKWi25tAZZrllNGZZGpukuOVxzl969Dib0au4G38WXiguZF1xELTHF16nauxC8sWrpoxr_phhVK99q7VtF3-rHtxKxlK5LIYa7qfF_6H9a37SahYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695726162</pqid></control><display><type>article</type><title>Design of optimal sand fences around a desert solar park—a case study from Phase IV of the Mohammed bin Rashid Al Maktoum Solar Park</title><source>Springer Nature - Complete Springer Journals</source><creator>Yao, Zhengyi ; Xiao, Jianhua ; Xie, Xiaosong ; Zhu, Haijun ; Qu, Jianjun</creator><creatorcontrib>Yao, Zhengyi ; Xiao, Jianhua ; Xie, Xiaosong ; Zhu, Haijun ; Qu, Jianjun</creatorcontrib><description>Solar energy parks in desert areas must resist the encroachment of moving sand and burial by migrating dunes. It is therefore important to design economical, effective sand fences to protect the parks. Based on an analysis of wind regime data and the grain-size distribution of transported sands, field-measured sand fluxes, and theoretical calculations, we designed the form, height, and structure of such sand fences. The aeolian sand in the study area is uniformly graded fine sand with particles ranging in size from 0.063 to 0.250 mm. Drift potential averaged 646 VU (i.e., a high-energy wind environment) and dune migration averaged 11.9 m yr −1 . The vertical mass flux profiles of aeolian sand followed power functions. The sand quantity transported below 10 cm in height accounted for &gt; 99.8% of the total, with most of the remainder transported above 20 cm. The yearly maximum depth of sand deposited at the sand fences ranged from 1.63 to 2.50 m for mobile dunes and from 0.84 to 1.08 m for flat land. The lateral pressure exerted on the sand fence by accumulated sand ranged from 4.9 to 9.2 kPa for mobile dunes and from 1.1 to 3.1 kPa for flat land. Our results suggest an optimal sand fence height of 2.0 to 2.5 m for areas with mobile dunes and 1.0 to 1.5 m for flat land. To conserve materials, the sand fence could be combined with a security fence or wind fence. Our results provide a reference for designing sand fences in sandy areas.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-022-05319-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Deserts ; Design ; Dunes ; Earth and Environmental Science ; Earth Sciences ; Encroachment ; Environmental Management ; Eolian sands ; Fences ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Grain size distribution ; Height ; Hydrogeology ; Lateral pressure ; Mass flux ; Natural Hazards ; Original Paper ; Parks ; Parks &amp; recreation areas ; Sand ; Security ; Size distribution ; Solar energy ; Solar farms ; Wind ; Wind regime</subject><ispartof>Natural hazards (Dordrecht), 2022-08, Vol.113 (1), p.673-697</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-b48cf14c47d7df6e68a4711bfaa3fff6c89db28bf4bffd929fea15d1c01a8e933</citedby><cites>FETCH-LOGICAL-c249t-b48cf14c47d7df6e68a4711bfaa3fff6c89db28bf4bffd929fea15d1c01a8e933</cites><orcidid>0000-0002-5899-9502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-022-05319-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-022-05319-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yao, Zhengyi</creatorcontrib><creatorcontrib>Xiao, Jianhua</creatorcontrib><creatorcontrib>Xie, Xiaosong</creatorcontrib><creatorcontrib>Zhu, Haijun</creatorcontrib><creatorcontrib>Qu, Jianjun</creatorcontrib><title>Design of optimal sand fences around a desert solar park—a case study from Phase IV of the Mohammed bin Rashid Al Maktoum Solar Park</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Solar energy parks in desert areas must resist the encroachment of moving sand and burial by migrating dunes. It is therefore important to design economical, effective sand fences to protect the parks. Based on an analysis of wind regime data and the grain-size distribution of transported sands, field-measured sand fluxes, and theoretical calculations, we designed the form, height, and structure of such sand fences. The aeolian sand in the study area is uniformly graded fine sand with particles ranging in size from 0.063 to 0.250 mm. Drift potential averaged 646 VU (i.e., a high-energy wind environment) and dune migration averaged 11.9 m yr −1 . The vertical mass flux profiles of aeolian sand followed power functions. The sand quantity transported below 10 cm in height accounted for &gt; 99.8% of the total, with most of the remainder transported above 20 cm. The yearly maximum depth of sand deposited at the sand fences ranged from 1.63 to 2.50 m for mobile dunes and from 0.84 to 1.08 m for flat land. The lateral pressure exerted on the sand fence by accumulated sand ranged from 4.9 to 9.2 kPa for mobile dunes and from 1.1 to 3.1 kPa for flat land. Our results suggest an optimal sand fence height of 2.0 to 2.5 m for areas with mobile dunes and 1.0 to 1.5 m for flat land. To conserve materials, the sand fence could be combined with a security fence or wind fence. Our results provide a reference for designing sand fences in sandy areas.</description><subject>Civil Engineering</subject><subject>Deserts</subject><subject>Design</subject><subject>Dunes</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Encroachment</subject><subject>Environmental Management</subject><subject>Eolian sands</subject><subject>Fences</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Grain size distribution</subject><subject>Height</subject><subject>Hydrogeology</subject><subject>Lateral pressure</subject><subject>Mass flux</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Parks</subject><subject>Parks &amp; recreation areas</subject><subject>Sand</subject><subject>Security</subject><subject>Size distribution</subject><subject>Solar energy</subject><subject>Solar farms</subject><subject>Wind</subject><subject>Wind regime</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEuXxA6xGYh2wncSJl4i31ArES-ysSWw3LU1c7GTBjhVfwBfyJbgUiR2r0YzuPSMdQg4YPWKUFseBMSpkQjlPaJ4ymYgNMmJ5kSa0zOgmGVHJWUJT-rxNdkKYU8qY4HJEPs5MmE07cBbcsp-1uICAnQZrutoEQO-GuCFoE4zvIbgFeliif_l6_0SoMRgI_aDfwHrXwm2zOlw_rXB9Y2DiGmxbo6GadXCHoZlpOFnABF96N7Rw_0O7jbQ9smVxEcz-79wljxfnD6dXyfjm8vr0ZJzUPJN9UmVlbVlWZ4UutBVGlJgVjFUWMbXWirqUuuJlZbPKWi25tAZZrllNGZZGpukuOVxzl969Dib0au4G38WXiguZF1xELTHF16nauxC8sWrpoxr_phhVK99q7VtF3-rHtxKxlK5LIYa7qfF_6H9a37SahYs</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Yao, Zhengyi</creator><creator>Xiao, Jianhua</creator><creator>Xie, Xiaosong</creator><creator>Zhu, Haijun</creator><creator>Qu, Jianjun</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5899-9502</orcidid></search><sort><creationdate>20220801</creationdate><title>Design of optimal sand fences around a desert solar park—a case study from Phase IV of the Mohammed bin Rashid Al Maktoum Solar Park</title><author>Yao, Zhengyi ; Xiao, Jianhua ; Xie, Xiaosong ; Zhu, Haijun ; Qu, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b48cf14c47d7df6e68a4711bfaa3fff6c89db28bf4bffd929fea15d1c01a8e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Civil Engineering</topic><topic>Deserts</topic><topic>Design</topic><topic>Dunes</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Encroachment</topic><topic>Environmental Management</topic><topic>Eolian sands</topic><topic>Fences</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Grain size distribution</topic><topic>Height</topic><topic>Hydrogeology</topic><topic>Lateral pressure</topic><topic>Mass flux</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Parks</topic><topic>Parks &amp; recreation areas</topic><topic>Sand</topic><topic>Security</topic><topic>Size distribution</topic><topic>Solar energy</topic><topic>Solar farms</topic><topic>Wind</topic><topic>Wind regime</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Zhengyi</creatorcontrib><creatorcontrib>Xiao, Jianhua</creatorcontrib><creatorcontrib>Xie, Xiaosong</creatorcontrib><creatorcontrib>Zhu, Haijun</creatorcontrib><creatorcontrib>Qu, Jianjun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Zhengyi</au><au>Xiao, Jianhua</au><au>Xie, Xiaosong</au><au>Zhu, Haijun</au><au>Qu, Jianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of optimal sand fences around a desert solar park—a case study from Phase IV of the Mohammed bin Rashid Al Maktoum Solar Park</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>113</volume><issue>1</issue><spage>673</spage><epage>697</epage><pages>673-697</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>Solar energy parks in desert areas must resist the encroachment of moving sand and burial by migrating dunes. It is therefore important to design economical, effective sand fences to protect the parks. Based on an analysis of wind regime data and the grain-size distribution of transported sands, field-measured sand fluxes, and theoretical calculations, we designed the form, height, and structure of such sand fences. The aeolian sand in the study area is uniformly graded fine sand with particles ranging in size from 0.063 to 0.250 mm. Drift potential averaged 646 VU (i.e., a high-energy wind environment) and dune migration averaged 11.9 m yr −1 . The vertical mass flux profiles of aeolian sand followed power functions. The sand quantity transported below 10 cm in height accounted for &gt; 99.8% of the total, with most of the remainder transported above 20 cm. The yearly maximum depth of sand deposited at the sand fences ranged from 1.63 to 2.50 m for mobile dunes and from 0.84 to 1.08 m for flat land. The lateral pressure exerted on the sand fence by accumulated sand ranged from 4.9 to 9.2 kPa for mobile dunes and from 1.1 to 3.1 kPa for flat land. Our results suggest an optimal sand fence height of 2.0 to 2.5 m for areas with mobile dunes and 1.0 to 1.5 m for flat land. To conserve materials, the sand fence could be combined with a security fence or wind fence. Our results provide a reference for designing sand fences in sandy areas.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-022-05319-6</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-5899-9502</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-030X
ispartof Natural hazards (Dordrecht), 2022-08, Vol.113 (1), p.673-697
issn 0921-030X
1573-0840
language eng
recordid cdi_proquest_journals_2695726162
source Springer Nature - Complete Springer Journals
subjects Civil Engineering
Deserts
Design
Dunes
Earth and Environmental Science
Earth Sciences
Encroachment
Environmental Management
Eolian sands
Fences
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Grain size distribution
Height
Hydrogeology
Lateral pressure
Mass flux
Natural Hazards
Original Paper
Parks
Parks & recreation areas
Sand
Security
Size distribution
Solar energy
Solar farms
Wind
Wind regime
title Design of optimal sand fences around a desert solar park—a case study from Phase IV of the Mohammed bin Rashid Al Maktoum Solar Park
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20optimal%20sand%20fences%20around%20a%20desert%20solar%20park%E2%80%94a%20case%20study%20from%20Phase%20IV%20of%20the%20Mohammed%20bin%20Rashid%20Al%20Maktoum%20Solar%20Park&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Yao,%20Zhengyi&rft.date=2022-08-01&rft.volume=113&rft.issue=1&rft.spage=673&rft.epage=697&rft.pages=673-697&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-022-05319-6&rft_dat=%3Cproquest_cross%3E2695726162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695726162&rft_id=info:pmid/&rfr_iscdi=true