High-speed liquid crystal display simulation using parallel reservoir computing approach

The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2022-08, Vol.61 (8), p.87001
Hauptverfasser: Watanabe, Makoto, Kotani, Kiyoshi, Jimbo, Yasuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 87001
container_title Japanese Journal of Applied Physics
container_volume 61
creator Watanabe, Makoto
Kotani, Kiyoshi
Jimbo, Yasuhiko
description The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dynamical systems in LCDs are nonlinear multiphysics composed of electromagnetism, fluid dynamics, and elastic mechanics. A machine learning method is one of the solutions to reduce computational cost. In this paper, we have extended the parallel reservoir computing framework and applied it to LCD simulation. We have discussed how to implement each natural feature of liquid crystal cells, namely, non-autonomy, multiphysics and long-range orientational order, into the framework of parallel reservoir computing. Sufficient higher accuracy was obtained with several display patterns and driving frequencies at computational speeds more than 100 times higher than FDM.
doi_str_mv 10.35848/1347-4065/ac7ca9
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2695512788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695512788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-fb741b6fc4ad55e0da7b05ca15cd931b87146858f6234479337a1e2900b927bd3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C7gxs3Y_E4ySylqhYIbBXchk2TalLSTJjNC396pI7oRV5d773fOgQPANUZ3lEsmZ5gyUTBU8pk2wujqBEx-TqdgghDBBasIOQcXOW-GteQMT8D7wq_WRY7OWRj8vvcWmnTInQ7Q-hyDPsDst33QnW93sM9-t4JRJx2CCzC57NJH6xM07Tb23fGpY0ytNutLcNbokN3V95yCt8eH1_miWL48Pc_vl4VhGHVFUwuG67IxTFvOHbJa1IgbjbmxFcW1FJiVksumJJQxUVEqNHakQqiuiKgtnYKb0XeI3fcud2rT9mk3RCpSVpxjIqQcKDxSJrU5J9eomPxWp4PCSH0VqI5tqWNbaixw0BSjxrfx1_Q__vYPfrPRUZVYSYWkQAiraBv6CVE2gPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695512788</pqid></control><display><type>article</type><title>High-speed liquid crystal display simulation using parallel reservoir computing approach</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</creator><creatorcontrib>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</creatorcontrib><description>The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dynamical systems in LCDs are nonlinear multiphysics composed of electromagnetism, fluid dynamics, and elastic mechanics. A machine learning method is one of the solutions to reduce computational cost. In this paper, we have extended the parallel reservoir computing framework and applied it to LCD simulation. We have discussed how to implement each natural feature of liquid crystal cells, namely, non-autonomy, multiphysics and long-range orientational order, into the framework of parallel reservoir computing. Sufficient higher accuracy was obtained with several display patterns and driving frequencies at computational speeds more than 100 times higher than FDM.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ac7ca9</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Computer simulation ; Computing costs ; Crystal structure ; Electromagnetism ; Finite element method ; Fluid dynamics ; liquid crystal display ; Liquid crystal displays ; Machine learning ; reservoir computing ; simulation</subject><ispartof>Japanese Journal of Applied Physics, 2022-08, Vol.61 (8), p.87001</ispartof><rights>2022 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-fb741b6fc4ad55e0da7b05ca15cd931b87146858f6234479337a1e2900b927bd3</citedby><cites>FETCH-LOGICAL-c410t-fb741b6fc4ad55e0da7b05ca15cd931b87146858f6234479337a1e2900b927bd3</cites><orcidid>0000-0002-7561-8513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ac7ca9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Watanabe, Makoto</creatorcontrib><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><title>High-speed liquid crystal display simulation using parallel reservoir computing approach</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dynamical systems in LCDs are nonlinear multiphysics composed of electromagnetism, fluid dynamics, and elastic mechanics. A machine learning method is one of the solutions to reduce computational cost. In this paper, we have extended the parallel reservoir computing framework and applied it to LCD simulation. We have discussed how to implement each natural feature of liquid crystal cells, namely, non-autonomy, multiphysics and long-range orientational order, into the framework of parallel reservoir computing. Sufficient higher accuracy was obtained with several display patterns and driving frequencies at computational speeds more than 100 times higher than FDM.</description><subject>Computer simulation</subject><subject>Computing costs</subject><subject>Crystal structure</subject><subject>Electromagnetism</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>liquid crystal display</subject><subject>Liquid crystal displays</subject><subject>Machine learning</subject><subject>reservoir computing</subject><subject>simulation</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C7gxs3Y_E4ySylqhYIbBXchk2TalLSTJjNC396pI7oRV5d773fOgQPANUZ3lEsmZ5gyUTBU8pk2wujqBEx-TqdgghDBBasIOQcXOW-GteQMT8D7wq_WRY7OWRj8vvcWmnTInQ7Q-hyDPsDst33QnW93sM9-t4JRJx2CCzC57NJH6xM07Tb23fGpY0ytNutLcNbokN3V95yCt8eH1_miWL48Pc_vl4VhGHVFUwuG67IxTFvOHbJa1IgbjbmxFcW1FJiVksumJJQxUVEqNHakQqiuiKgtnYKb0XeI3fcud2rT9mk3RCpSVpxjIqQcKDxSJrU5J9eomPxWp4PCSH0VqI5tqWNbaixw0BSjxrfx1_Q__vYPfrPRUZVYSYWkQAiraBv6CVE2gPk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Watanabe, Makoto</creator><creator>Kotani, Kiyoshi</creator><creator>Jimbo, Yasuhiko</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7561-8513</orcidid></search><sort><creationdate>20220801</creationdate><title>High-speed liquid crystal display simulation using parallel reservoir computing approach</title><author>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-fb741b6fc4ad55e0da7b05ca15cd931b87146858f6234479337a1e2900b927bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer simulation</topic><topic>Computing costs</topic><topic>Crystal structure</topic><topic>Electromagnetism</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>liquid crystal display</topic><topic>Liquid crystal displays</topic><topic>Machine learning</topic><topic>reservoir computing</topic><topic>simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Makoto</creatorcontrib><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Makoto</au><au>Kotani, Kiyoshi</au><au>Jimbo, Yasuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-speed liquid crystal display simulation using parallel reservoir computing approach</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>61</volume><issue>8</issue><spage>87001</spage><pages>87001-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dynamical systems in LCDs are nonlinear multiphysics composed of electromagnetism, fluid dynamics, and elastic mechanics. A machine learning method is one of the solutions to reduce computational cost. In this paper, we have extended the parallel reservoir computing framework and applied it to LCD simulation. We have discussed how to implement each natural feature of liquid crystal cells, namely, non-autonomy, multiphysics and long-range orientational order, into the framework of parallel reservoir computing. Sufficient higher accuracy was obtained with several display patterns and driving frequencies at computational speeds more than 100 times higher than FDM.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ac7ca9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7561-8513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2022-08, Vol.61 (8), p.87001
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_journals_2695512788
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Computer simulation
Computing costs
Crystal structure
Electromagnetism
Finite element method
Fluid dynamics
liquid crystal display
Liquid crystal displays
Machine learning
reservoir computing
simulation
title High-speed liquid crystal display simulation using parallel reservoir computing approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-speed%20liquid%20crystal%20display%20simulation%20using%20parallel%20reservoir%20computing%20approach&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Watanabe,%20Makoto&rft.date=2022-08-01&rft.volume=61&rft.issue=8&rft.spage=87001&rft.pages=87001-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ac7ca9&rft_dat=%3Cproquest_iop_j%3E2695512788%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695512788&rft_id=info:pmid/&rfr_iscdi=true