High-speed liquid crystal display simulation using parallel reservoir computing approach
The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dyn...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2022-08, Vol.61 (8), p.87001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 87001 |
container_title | Japanese Journal of Applied Physics |
container_volume | 61 |
creator | Watanabe, Makoto Kotani, Kiyoshi Jimbo, Yasuhiko |
description | The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dynamical systems in LCDs are nonlinear multiphysics composed of electromagnetism, fluid dynamics, and elastic mechanics. A machine learning method is one of the solutions to reduce computational cost. In this paper, we have extended the parallel reservoir computing framework and applied it to LCD simulation. We have discussed how to implement each natural feature of liquid crystal cells, namely, non-autonomy, multiphysics and long-range orientational order, into the framework of parallel reservoir computing. Sufficient higher accuracy was obtained with several display patterns and driving frequencies at computational speeds more than 100 times higher than FDM. |
doi_str_mv | 10.35848/1347-4065/ac7ca9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2695512788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695512788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-fb741b6fc4ad55e0da7b05ca15cd931b87146858f6234479337a1e2900b927bd3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4C7gxs3Y_E4ySylqhYIbBXchk2TalLSTJjNC396pI7oRV5d773fOgQPANUZ3lEsmZ5gyUTBU8pk2wujqBEx-TqdgghDBBasIOQcXOW-GteQMT8D7wq_WRY7OWRj8vvcWmnTInQ7Q-hyDPsDst33QnW93sM9-t4JRJx2CCzC57NJH6xM07Tb23fGpY0ytNutLcNbokN3V95yCt8eH1_miWL48Pc_vl4VhGHVFUwuG67IxTFvOHbJa1IgbjbmxFcW1FJiVksumJJQxUVEqNHakQqiuiKgtnYKb0XeI3fcud2rT9mk3RCpSVpxjIqQcKDxSJrU5J9eomPxWp4PCSH0VqI5tqWNbaixw0BSjxrfx1_Q__vYPfrPRUZVYSYWkQAiraBv6CVE2gPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695512788</pqid></control><display><type>article</type><title>High-speed liquid crystal display simulation using parallel reservoir computing approach</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</creator><creatorcontrib>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</creatorcontrib><description>The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dynamical systems in LCDs are nonlinear multiphysics composed of electromagnetism, fluid dynamics, and elastic mechanics. A machine learning method is one of the solutions to reduce computational cost. In this paper, we have extended the parallel reservoir computing framework and applied it to LCD simulation. We have discussed how to implement each natural feature of liquid crystal cells, namely, non-autonomy, multiphysics and long-range orientational order, into the framework of parallel reservoir computing. Sufficient higher accuracy was obtained with several display patterns and driving frequencies at computational speeds more than 100 times higher than FDM.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ac7ca9</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Computer simulation ; Computing costs ; Crystal structure ; Electromagnetism ; Finite element method ; Fluid dynamics ; liquid crystal display ; Liquid crystal displays ; Machine learning ; reservoir computing ; simulation</subject><ispartof>Japanese Journal of Applied Physics, 2022-08, Vol.61 (8), p.87001</ispartof><rights>2022 The Japan Society of Applied Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-fb741b6fc4ad55e0da7b05ca15cd931b87146858f6234479337a1e2900b927bd3</citedby><cites>FETCH-LOGICAL-c410t-fb741b6fc4ad55e0da7b05ca15cd931b87146858f6234479337a1e2900b927bd3</cites><orcidid>0000-0002-7561-8513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ac7ca9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Watanabe, Makoto</creatorcontrib><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><title>High-speed liquid crystal display simulation using parallel reservoir computing approach</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dynamical systems in LCDs are nonlinear multiphysics composed of electromagnetism, fluid dynamics, and elastic mechanics. A machine learning method is one of the solutions to reduce computational cost. In this paper, we have extended the parallel reservoir computing framework and applied it to LCD simulation. We have discussed how to implement each natural feature of liquid crystal cells, namely, non-autonomy, multiphysics and long-range orientational order, into the framework of parallel reservoir computing. Sufficient higher accuracy was obtained with several display patterns and driving frequencies at computational speeds more than 100 times higher than FDM.</description><subject>Computer simulation</subject><subject>Computing costs</subject><subject>Crystal structure</subject><subject>Electromagnetism</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>liquid crystal display</subject><subject>Liquid crystal displays</subject><subject>Machine learning</subject><subject>reservoir computing</subject><subject>simulation</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4C7gxs3Y_E4ySylqhYIbBXchk2TalLSTJjNC396pI7oRV5d773fOgQPANUZ3lEsmZ5gyUTBU8pk2wujqBEx-TqdgghDBBasIOQcXOW-GteQMT8D7wq_WRY7OWRj8vvcWmnTInQ7Q-hyDPsDst33QnW93sM9-t4JRJx2CCzC57NJH6xM07Tb23fGpY0ytNutLcNbokN3V95yCt8eH1_miWL48Pc_vl4VhGHVFUwuG67IxTFvOHbJa1IgbjbmxFcW1FJiVksumJJQxUVEqNHakQqiuiKgtnYKb0XeI3fcud2rT9mk3RCpSVpxjIqQcKDxSJrU5J9eomPxWp4PCSH0VqI5tqWNbaixw0BSjxrfx1_Q__vYPfrPRUZVYSYWkQAiraBv6CVE2gPk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Watanabe, Makoto</creator><creator>Kotani, Kiyoshi</creator><creator>Jimbo, Yasuhiko</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7561-8513</orcidid></search><sort><creationdate>20220801</creationdate><title>High-speed liquid crystal display simulation using parallel reservoir computing approach</title><author>Watanabe, Makoto ; Kotani, Kiyoshi ; Jimbo, Yasuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-fb741b6fc4ad55e0da7b05ca15cd931b87146858f6234479337a1e2900b927bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer simulation</topic><topic>Computing costs</topic><topic>Crystal structure</topic><topic>Electromagnetism</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>liquid crystal display</topic><topic>Liquid crystal displays</topic><topic>Machine learning</topic><topic>reservoir computing</topic><topic>simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Makoto</creatorcontrib><creatorcontrib>Kotani, Kiyoshi</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Makoto</au><au>Kotani, Kiyoshi</au><au>Jimbo, Yasuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-speed liquid crystal display simulation using parallel reservoir computing approach</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>61</volume><issue>8</issue><spage>87001</spage><pages>87001-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>The performance of liquid crystal displays (LCDs) is expected to be improved further with the emergence of their new applications. Numerical simulations such as the finite differential method (FDM) and the finite element method are useful in optimum design. However, they take a long time because dynamical systems in LCDs are nonlinear multiphysics composed of electromagnetism, fluid dynamics, and elastic mechanics. A machine learning method is one of the solutions to reduce computational cost. In this paper, we have extended the parallel reservoir computing framework and applied it to LCD simulation. We have discussed how to implement each natural feature of liquid crystal cells, namely, non-autonomy, multiphysics and long-range orientational order, into the framework of parallel reservoir computing. Sufficient higher accuracy was obtained with several display patterns and driving frequencies at computational speeds more than 100 times higher than FDM.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ac7ca9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7561-8513</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2022-08, Vol.61 (8), p.87001 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_proquest_journals_2695512788 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Computer simulation Computing costs Crystal structure Electromagnetism Finite element method Fluid dynamics liquid crystal display Liquid crystal displays Machine learning reservoir computing simulation |
title | High-speed liquid crystal display simulation using parallel reservoir computing approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-speed%20liquid%20crystal%20display%20simulation%20using%20parallel%20reservoir%20computing%20approach&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Watanabe,%20Makoto&rft.date=2022-08-01&rft.volume=61&rft.issue=8&rft.spage=87001&rft.pages=87001-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ac7ca9&rft_dat=%3Cproquest_iop_j%3E2695512788%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695512788&rft_id=info:pmid/&rfr_iscdi=true |