Combinatorial Structure of Faces in Triangulations on Surfaces

The degree of a vertex or face in a graph on the plane or other orientable surface is the number of incident edges. A face is of type if whenever . We denote the minimum vertex-degree of  by  . The purpose of our paper is to prove that every triangulation with of the torus, as well as of large enoug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2022-07, Vol.63 (4), p.662-669
Hauptverfasser: Borodin, O. V., Ivanova, A. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The degree of a vertex or face in a graph on the plane or other orientable surface is the number of incident edges. A face is of type if whenever . We denote the minimum vertex-degree of  by  . The purpose of our paper is to prove that every triangulation with of the torus, as well as of large enough such a triangulation of any fixed orientable surface of higher genus has a face of one of the types , , , , , or , where all parameters are best possible.
ISSN:0037-4466
1573-9260
DOI:10.1134/S0037446622040061