Multiagent Persistent Monitoring of Targets With Uncertain States
We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a func...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2022-08, Vol.67 (8), p.3997-4012 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4012 |
---|---|
container_issue | 8 |
container_start_page | 3997 |
container_title | IEEE transactions on automatic control |
container_volume | 67 |
creator | Pinto, Samuel C. Andersson, Sean B. Hendrickx, Julien M. Cassandras, Christos G. |
description | We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a function of the distance between the agent and a given target. The goal is then to minimize the mean squared estimation error of these target states. We approach the problem from an infinite horizon perspective, where we prove that, under some natural assumptions, the covariance matrix of each target converges to a limit cycle. The goal, therefore, becomes to minimize the steady-state uncertainty. Assuming that the trajectory is parameterized, we provide tools for computing the steady-state cost gradient. We show that, in 1-D (one dimensional) environments with bounded control and nonoverlapping targets, when an optimal control exists it can be represented using a finite number of parameters. We also propose an efficient parameterization of the agent trajectories for multidimensional settings using Fourier curves. Simulation results show the efficacy of the proposed technique in 1-D, 2-D, and 3-D scenarios. |
doi_str_mv | 10.1109/TAC.2022.3140257 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2695158331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9670738</ieee_id><sourcerecordid>2695158331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6296dd93bfcbd82a24fb2d6fc842c543d7012f92f51cbe672b154137afe4b13c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZycdujqX4BS0KtngM2WxSU-puTdKD_94tLZ7mHXjeGXgIuQU6AaDqYTmdTZAiThhwiqI6IyMQoi5RIDsnI0qhLhXW8pJcpbQZVsk5jMh0sd_mYNauy8W7iymkfIiLvgu5j6FbF70vliauXU7FZ8hfxaqzLmYTuuIjm-zSNbnwZpvczWmOyerpcTl7Kedvz6-z6by0jLFcSlSybRVrvG3aGg1y32Arva05WsFZW1FAr9ALsI2TFTYgOLDKeMcbYJaNyf3x7i72P3uXst70-9gNLzVKJUDUjMFA0SNlY59SdF7vYvg28VcD1QdRehClD6L0SdRQuTtWgnPuH1eyohWr2R-fMmPL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695158331</pqid></control><display><type>article</type><title>Multiagent Persistent Monitoring of Targets With Uncertain States</title><source>IEEE Electronic Library (IEL)</source><creator>Pinto, Samuel C. ; Andersson, Sean B. ; Hendrickx, Julien M. ; Cassandras, Christos G.</creator><creatorcontrib>Pinto, Samuel C. ; Andersson, Sean B. ; Hendrickx, Julien M. ; Cassandras, Christos G.</creatorcontrib><description>We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a function of the distance between the agent and a given target. The goal is then to minimize the mean squared estimation error of these target states. We approach the problem from an infinite horizon perspective, where we prove that, under some natural assumptions, the covariance matrix of each target converges to a limit cycle. The goal, therefore, becomes to minimize the steady-state uncertainty. Assuming that the trajectory is parameterized, we provide tools for computing the steady-state cost gradient. We show that, in 1-D (one dimensional) environments with bounded control and nonoverlapping targets, when an optimal control exists it can be represented using a finite number of parameters. We also propose an efficient parameterization of the agent trajectories for multidimensional settings using Fourier curves. Simulation results show the efficacy of the proposed technique in 1-D, 2-D, and 3-D scenarios.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3140257</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agents (artificial intelligence) ; autonomous-systems ; Covariance matrices ; Covariance matrix ; Monitoring ; Multi-agent systems ; Multiagent systems ; Optimal control ; Optimization ; Parameterization ; Software ; Steady state ; Trajectory ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.3997-4012</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6296dd93bfcbd82a24fb2d6fc842c543d7012f92f51cbe672b154137afe4b13c3</citedby><cites>FETCH-LOGICAL-c333t-6296dd93bfcbd82a24fb2d6fc842c543d7012f92f51cbe672b154137afe4b13c3</cites><orcidid>0000-0001-9385-5494 ; 0000-0001-7575-3507 ; 0000-0001-8214-8292 ; 0000-0002-1625-7658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9670738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9670738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pinto, Samuel C.</creatorcontrib><creatorcontrib>Andersson, Sean B.</creatorcontrib><creatorcontrib>Hendrickx, Julien M.</creatorcontrib><creatorcontrib>Cassandras, Christos G.</creatorcontrib><title>Multiagent Persistent Monitoring of Targets With Uncertain States</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a function of the distance between the agent and a given target. The goal is then to minimize the mean squared estimation error of these target states. We approach the problem from an infinite horizon perspective, where we prove that, under some natural assumptions, the covariance matrix of each target converges to a limit cycle. The goal, therefore, becomes to minimize the steady-state uncertainty. Assuming that the trajectory is parameterized, we provide tools for computing the steady-state cost gradient. We show that, in 1-D (one dimensional) environments with bounded control and nonoverlapping targets, when an optimal control exists it can be represented using a finite number of parameters. We also propose an efficient parameterization of the agent trajectories for multidimensional settings using Fourier curves. Simulation results show the efficacy of the proposed technique in 1-D, 2-D, and 3-D scenarios.</description><subject>Agents (artificial intelligence)</subject><subject>autonomous-systems</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Monitoring</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Software</subject><subject>Steady state</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZycdujqX4BS0KtngM2WxSU-puTdKD_94tLZ7mHXjeGXgIuQU6AaDqYTmdTZAiThhwiqI6IyMQoi5RIDsnI0qhLhXW8pJcpbQZVsk5jMh0sd_mYNauy8W7iymkfIiLvgu5j6FbF70vliauXU7FZ8hfxaqzLmYTuuIjm-zSNbnwZpvczWmOyerpcTl7Kedvz6-z6by0jLFcSlSybRVrvG3aGg1y32Arva05WsFZW1FAr9ALsI2TFTYgOLDKeMcbYJaNyf3x7i72P3uXst70-9gNLzVKJUDUjMFA0SNlY59SdF7vYvg28VcD1QdRehClD6L0SdRQuTtWgnPuH1eyohWr2R-fMmPL</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Pinto, Samuel C.</creator><creator>Andersson, Sean B.</creator><creator>Hendrickx, Julien M.</creator><creator>Cassandras, Christos G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9385-5494</orcidid><orcidid>https://orcid.org/0000-0001-7575-3507</orcidid><orcidid>https://orcid.org/0000-0001-8214-8292</orcidid><orcidid>https://orcid.org/0000-0002-1625-7658</orcidid></search><sort><creationdate>20220801</creationdate><title>Multiagent Persistent Monitoring of Targets With Uncertain States</title><author>Pinto, Samuel C. ; Andersson, Sean B. ; Hendrickx, Julien M. ; Cassandras, Christos G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6296dd93bfcbd82a24fb2d6fc842c543d7012f92f51cbe672b154137afe4b13c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agents (artificial intelligence)</topic><topic>autonomous-systems</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Monitoring</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Software</topic><topic>Steady state</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinto, Samuel C.</creatorcontrib><creatorcontrib>Andersson, Sean B.</creatorcontrib><creatorcontrib>Hendrickx, Julien M.</creatorcontrib><creatorcontrib>Cassandras, Christos G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinto, Samuel C.</au><au>Andersson, Sean B.</au><au>Hendrickx, Julien M.</au><au>Cassandras, Christos G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiagent Persistent Monitoring of Targets With Uncertain States</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>67</volume><issue>8</issue><spage>3997</spage><epage>4012</epage><pages>3997-4012</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a function of the distance between the agent and a given target. The goal is then to minimize the mean squared estimation error of these target states. We approach the problem from an infinite horizon perspective, where we prove that, under some natural assumptions, the covariance matrix of each target converges to a limit cycle. The goal, therefore, becomes to minimize the steady-state uncertainty. Assuming that the trajectory is parameterized, we provide tools for computing the steady-state cost gradient. We show that, in 1-D (one dimensional) environments with bounded control and nonoverlapping targets, when an optimal control exists it can be represented using a finite number of parameters. We also propose an efficient parameterization of the agent trajectories for multidimensional settings using Fourier curves. Simulation results show the efficacy of the proposed technique in 1-D, 2-D, and 3-D scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3140257</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9385-5494</orcidid><orcidid>https://orcid.org/0000-0001-7575-3507</orcidid><orcidid>https://orcid.org/0000-0001-8214-8292</orcidid><orcidid>https://orcid.org/0000-0002-1625-7658</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.3997-4012 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_2695158331 |
source | IEEE Electronic Library (IEL) |
subjects | Agents (artificial intelligence) autonomous-systems Covariance matrices Covariance matrix Monitoring Multi-agent systems Multiagent systems Optimal control Optimization Parameterization Software Steady state Trajectory Uncertainty |
title | Multiagent Persistent Monitoring of Targets With Uncertain States |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiagent%20Persistent%20Monitoring%20of%20Targets%20With%20Uncertain%20States&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Pinto,%20Samuel%20C.&rft.date=2022-08-01&rft.volume=67&rft.issue=8&rft.spage=3997&rft.epage=4012&rft.pages=3997-4012&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3140257&rft_dat=%3Cproquest_RIE%3E2695158331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695158331&rft_id=info:pmid/&rft_ieee_id=9670738&rfr_iscdi=true |