Multiagent Persistent Monitoring of Targets With Uncertain States

We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2022-08, Vol.67 (8), p.3997-4012
Hauptverfasser: Pinto, Samuel C., Andersson, Sean B., Hendrickx, Julien M., Cassandras, Christos G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4012
container_issue 8
container_start_page 3997
container_title IEEE transactions on automatic control
container_volume 67
creator Pinto, Samuel C.
Andersson, Sean B.
Hendrickx, Julien M.
Cassandras, Christos G.
description We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a function of the distance between the agent and a given target. The goal is then to minimize the mean squared estimation error of these target states. We approach the problem from an infinite horizon perspective, where we prove that, under some natural assumptions, the covariance matrix of each target converges to a limit cycle. The goal, therefore, becomes to minimize the steady-state uncertainty. Assuming that the trajectory is parameterized, we provide tools for computing the steady-state cost gradient. We show that, in 1-D (one dimensional) environments with bounded control and nonoverlapping targets, when an optimal control exists it can be represented using a finite number of parameters. We also propose an efficient parameterization of the agent trajectories for multidimensional settings using Fourier curves. Simulation results show the efficacy of the proposed technique in 1-D, 2-D, and 3-D scenarios.
doi_str_mv 10.1109/TAC.2022.3140257
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2695158331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9670738</ieee_id><sourcerecordid>2695158331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6296dd93bfcbd82a24fb2d6fc842c543d7012f92f51cbe672b154137afe4b13c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZycdujqX4BS0KtngM2WxSU-puTdKD_94tLZ7mHXjeGXgIuQU6AaDqYTmdTZAiThhwiqI6IyMQoi5RIDsnI0qhLhXW8pJcpbQZVsk5jMh0sd_mYNauy8W7iymkfIiLvgu5j6FbF70vliauXU7FZ8hfxaqzLmYTuuIjm-zSNbnwZpvczWmOyerpcTl7Kedvz6-z6by0jLFcSlSybRVrvG3aGg1y32Arva05WsFZW1FAr9ALsI2TFTYgOLDKeMcbYJaNyf3x7i72P3uXst70-9gNLzVKJUDUjMFA0SNlY59SdF7vYvg28VcD1QdRehClD6L0SdRQuTtWgnPuH1eyohWr2R-fMmPL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695158331</pqid></control><display><type>article</type><title>Multiagent Persistent Monitoring of Targets With Uncertain States</title><source>IEEE Electronic Library (IEL)</source><creator>Pinto, Samuel C. ; Andersson, Sean B. ; Hendrickx, Julien M. ; Cassandras, Christos G.</creator><creatorcontrib>Pinto, Samuel C. ; Andersson, Sean B. ; Hendrickx, Julien M. ; Cassandras, Christos G.</creatorcontrib><description>We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a function of the distance between the agent and a given target. The goal is then to minimize the mean squared estimation error of these target states. We approach the problem from an infinite horizon perspective, where we prove that, under some natural assumptions, the covariance matrix of each target converges to a limit cycle. The goal, therefore, becomes to minimize the steady-state uncertainty. Assuming that the trajectory is parameterized, we provide tools for computing the steady-state cost gradient. We show that, in 1-D (one dimensional) environments with bounded control and nonoverlapping targets, when an optimal control exists it can be represented using a finite number of parameters. We also propose an efficient parameterization of the agent trajectories for multidimensional settings using Fourier curves. Simulation results show the efficacy of the proposed technique in 1-D, 2-D, and 3-D scenarios.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3140257</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agents (artificial intelligence) ; autonomous-systems ; Covariance matrices ; Covariance matrix ; Monitoring ; Multi-agent systems ; Multiagent systems ; Optimal control ; Optimization ; Parameterization ; Software ; Steady state ; Trajectory ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.3997-4012</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6296dd93bfcbd82a24fb2d6fc842c543d7012f92f51cbe672b154137afe4b13c3</citedby><cites>FETCH-LOGICAL-c333t-6296dd93bfcbd82a24fb2d6fc842c543d7012f92f51cbe672b154137afe4b13c3</cites><orcidid>0000-0001-9385-5494 ; 0000-0001-7575-3507 ; 0000-0001-8214-8292 ; 0000-0002-1625-7658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9670738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9670738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pinto, Samuel C.</creatorcontrib><creatorcontrib>Andersson, Sean B.</creatorcontrib><creatorcontrib>Hendrickx, Julien M.</creatorcontrib><creatorcontrib>Cassandras, Christos G.</creatorcontrib><title>Multiagent Persistent Monitoring of Targets With Uncertain States</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a function of the distance between the agent and a given target. The goal is then to minimize the mean squared estimation error of these target states. We approach the problem from an infinite horizon perspective, where we prove that, under some natural assumptions, the covariance matrix of each target converges to a limit cycle. The goal, therefore, becomes to minimize the steady-state uncertainty. Assuming that the trajectory is parameterized, we provide tools for computing the steady-state cost gradient. We show that, in 1-D (one dimensional) environments with bounded control and nonoverlapping targets, when an optimal control exists it can be represented using a finite number of parameters. We also propose an efficient parameterization of the agent trajectories for multidimensional settings using Fourier curves. Simulation results show the efficacy of the proposed technique in 1-D, 2-D, and 3-D scenarios.</description><subject>Agents (artificial intelligence)</subject><subject>autonomous-systems</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Monitoring</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Software</subject><subject>Steady state</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZycdujqX4BS0KtngM2WxSU-puTdKD_94tLZ7mHXjeGXgIuQU6AaDqYTmdTZAiThhwiqI6IyMQoi5RIDsnI0qhLhXW8pJcpbQZVsk5jMh0sd_mYNauy8W7iymkfIiLvgu5j6FbF70vliauXU7FZ8hfxaqzLmYTuuIjm-zSNbnwZpvczWmOyerpcTl7Kedvz6-z6by0jLFcSlSybRVrvG3aGg1y32Arva05WsFZW1FAr9ALsI2TFTYgOLDKeMcbYJaNyf3x7i72P3uXst70-9gNLzVKJUDUjMFA0SNlY59SdF7vYvg28VcD1QdRehClD6L0SdRQuTtWgnPuH1eyohWr2R-fMmPL</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Pinto, Samuel C.</creator><creator>Andersson, Sean B.</creator><creator>Hendrickx, Julien M.</creator><creator>Cassandras, Christos G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9385-5494</orcidid><orcidid>https://orcid.org/0000-0001-7575-3507</orcidid><orcidid>https://orcid.org/0000-0001-8214-8292</orcidid><orcidid>https://orcid.org/0000-0002-1625-7658</orcidid></search><sort><creationdate>20220801</creationdate><title>Multiagent Persistent Monitoring of Targets With Uncertain States</title><author>Pinto, Samuel C. ; Andersson, Sean B. ; Hendrickx, Julien M. ; Cassandras, Christos G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6296dd93bfcbd82a24fb2d6fc842c543d7012f92f51cbe672b154137afe4b13c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agents (artificial intelligence)</topic><topic>autonomous-systems</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Monitoring</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Software</topic><topic>Steady state</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinto, Samuel C.</creatorcontrib><creatorcontrib>Andersson, Sean B.</creatorcontrib><creatorcontrib>Hendrickx, Julien M.</creatorcontrib><creatorcontrib>Cassandras, Christos G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinto, Samuel C.</au><au>Andersson, Sean B.</au><au>Hendrickx, Julien M.</au><au>Cassandras, Christos G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiagent Persistent Monitoring of Targets With Uncertain States</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>67</volume><issue>8</issue><spage>3997</spage><epage>4012</epage><pages>3997-4012</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a function of the distance between the agent and a given target. The goal is then to minimize the mean squared estimation error of these target states. We approach the problem from an infinite horizon perspective, where we prove that, under some natural assumptions, the covariance matrix of each target converges to a limit cycle. The goal, therefore, becomes to minimize the steady-state uncertainty. Assuming that the trajectory is parameterized, we provide tools for computing the steady-state cost gradient. We show that, in 1-D (one dimensional) environments with bounded control and nonoverlapping targets, when an optimal control exists it can be represented using a finite number of parameters. We also propose an efficient parameterization of the agent trajectories for multidimensional settings using Fourier curves. Simulation results show the efficacy of the proposed technique in 1-D, 2-D, and 3-D scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3140257</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9385-5494</orcidid><orcidid>https://orcid.org/0000-0001-7575-3507</orcidid><orcidid>https://orcid.org/0000-0001-8214-8292</orcidid><orcidid>https://orcid.org/0000-0002-1625-7658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.3997-4012
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_2695158331
source IEEE Electronic Library (IEL)
subjects Agents (artificial intelligence)
autonomous-systems
Covariance matrices
Covariance matrix
Monitoring
Multi-agent systems
Multiagent systems
Optimal control
Optimization
Parameterization
Software
Steady state
Trajectory
Uncertainty
title Multiagent Persistent Monitoring of Targets With Uncertain States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiagent%20Persistent%20Monitoring%20of%20Targets%20With%20Uncertain%20States&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Pinto,%20Samuel%20C.&rft.date=2022-08-01&rft.volume=67&rft.issue=8&rft.spage=3997&rft.epage=4012&rft.pages=3997-4012&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3140257&rft_dat=%3Cproquest_RIE%3E2695158331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695158331&rft_id=info:pmid/&rft_ieee_id=9670738&rfr_iscdi=true