Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals

Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2022-08, Vol.40 (15), p.5231-5235
Hauptverfasser: Bodnarchuk, Yadviga V., Gainutdinov, Radmir V., Volk, Tatyana R., Chen, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5235
container_issue 15
container_start_page 5231
container_title Journal of lightwave technology
container_volume 40
creator Bodnarchuk, Yadviga V.
Gainutdinov, Radmir V.
Volk, Tatyana R.
Chen, Feng
description Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a He-implanted layer provides an abrupt boundary of the waveguide. We describe the AFM-tip domain writing in planar He-LiNbO 3 formed on the polar surface of LiNbO 3 plates. The data obtained are compared to the characteristics of AFM-tip domain writing in LNOI (LiNbO 3 -on-insulator). This comparison is justified by the fact that LNOI represents a waveguide derived from He-LiNbO 3 . The writing characteristics in LNOI and He-LiNbO 3 are qualitatively similar, namely the dependences of the domain diameter on AFM-tip voltages U tip and exposure times t p are described by the linear and power laws, respectively. However, in He-LiNbO 3 these dependences are less steep. A striking difference is manifested in the ferroelectric hysteresis loops. In (21) He-LiNbO 3 their characteristics and spatial distribution depend on t p , whereas in LNOI the loops are spatially uniform and frequency independent. These distinctions in the domain formation in two related media can be accounted for by the fact that on contrast to LNOI, domain (25) walls in He-LiNbO 3 are pinned on the structurally damaged layer inherent in this waveguide.
doi_str_mv 10.1109/JLT.2022.3175021
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2695153393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9774888</ieee_id><sourcerecordid>2695153393</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-4f114fbf708be04cb1dad3591aa06ef1af718f9a5feaf21af76748f9d683fda63</originalsourceid><addsrcrecordid>eNotjc9LwzAcxYMoOKd3wUvAc2a-Sdukx1Gcm3TOw3TgpaRrMjL6yzQV9t8bmaf3vu99eF-E7oHOAGj69JpvZ4wyNuMgYsrgAk0gjiVhDPglmlDBOZGCRdfoZhiOlEIUSTFBw9ruXVd1jbItflfea9cOeOdscC0uT3i-WJOt7fFnV3t10AMO3FKTVdPXqvW6wpve272q8U796MNoq4AsOteEpmvxF8lGj3P7Vm44ztxp8KoebtGVCaLv_nWKPhbP22xJ8s3LKpvnxALnnkQGIDKlEVSWmkb7EipV8TgFpWiiDSgjQJpUxUYrw_7OREQhqBLJTaUSPkWP593edd-jHnxx7EbXhpcFS9IYYs5THqiHM2W11kXvbKPcqUhF2JKS_wI6PGZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695153393</pqid></control><display><type>article</type><title>Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals</title><source>IEEE Electronic Library (IEL)</source><creator>Bodnarchuk, Yadviga V. ; Gainutdinov, Radmir V. ; Volk, Tatyana R. ; Chen, Feng</creator><creatorcontrib>Bodnarchuk, Yadviga V. ; Gainutdinov, Radmir V. ; Volk, Tatyana R. ; Chen, Feng</creatorcontrib><description>Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a He-implanted layer provides an abrupt boundary of the waveguide. We describe the AFM-tip domain writing in planar He-LiNbO 3 formed on the polar surface of LiNbO 3 plates. The data obtained are compared to the characteristics of AFM-tip domain writing in LNOI (LiNbO 3 -on-insulator). This comparison is justified by the fact that LNOI represents a waveguide derived from He-LiNbO 3 . The writing characteristics in LNOI and He-LiNbO 3 are qualitatively similar, namely the dependences of the domain diameter on AFM-tip voltages U tip and exposure times t p are described by the linear and power laws, respectively. However, in He-LiNbO 3 these dependences are less steep. A striking difference is manifested in the ferroelectric hysteresis loops. In (21) He-LiNbO 3 their characteristics and spatial distribution depend on t p , whereas in LNOI the loops are spatially uniform and frequency independent. These distinctions in the domain formation in two related media can be accounted for by the fact that on contrast to LNOI, domain (25) walls in He-LiNbO 3 are pinned on the structurally damaged layer inherent in this waveguide.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3175021</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic force microscopy ; Domain walls ; Domains ; ferroelectric domains ; Ferroelectricity ; helium implantation ; Hysteresis ; Hysteresis loops ; Ion implantation ; lithium niobate ; Lithium niobates ; Optical properties ; Optical refraction ; Optical surface waves ; Optical variables control ; Optical waveguides ; Spatial distribution ; Surface waves ; Writing</subject><ispartof>Journal of lightwave technology, 2022-08, Vol.40 (15), p.5231-5235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9277-9810 ; 0000-0003-1537-8914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9774888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9774888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bodnarchuk, Yadviga V.</creatorcontrib><creatorcontrib>Gainutdinov, Radmir V.</creatorcontrib><creatorcontrib>Volk, Tatyana R.</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a He-implanted layer provides an abrupt boundary of the waveguide. We describe the AFM-tip domain writing in planar He-LiNbO 3 formed on the polar surface of LiNbO 3 plates. The data obtained are compared to the characteristics of AFM-tip domain writing in LNOI (LiNbO 3 -on-insulator). This comparison is justified by the fact that LNOI represents a waveguide derived from He-LiNbO 3 . The writing characteristics in LNOI and He-LiNbO 3 are qualitatively similar, namely the dependences of the domain diameter on AFM-tip voltages U tip and exposure times t p are described by the linear and power laws, respectively. However, in He-LiNbO 3 these dependences are less steep. A striking difference is manifested in the ferroelectric hysteresis loops. In (21) He-LiNbO 3 their characteristics and spatial distribution depend on t p , whereas in LNOI the loops are spatially uniform and frequency independent. These distinctions in the domain formation in two related media can be accounted for by the fact that on contrast to LNOI, domain (25) walls in He-LiNbO 3 are pinned on the structurally damaged layer inherent in this waveguide.</description><subject>Atomic force microscopy</subject><subject>Domain walls</subject><subject>Domains</subject><subject>ferroelectric domains</subject><subject>Ferroelectricity</subject><subject>helium implantation</subject><subject>Hysteresis</subject><subject>Hysteresis loops</subject><subject>Ion implantation</subject><subject>lithium niobate</subject><subject>Lithium niobates</subject><subject>Optical properties</subject><subject>Optical refraction</subject><subject>Optical surface waves</subject><subject>Optical variables control</subject><subject>Optical waveguides</subject><subject>Spatial distribution</subject><subject>Surface waves</subject><subject>Writing</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjc9LwzAcxYMoOKd3wUvAc2a-Sdukx1Gcm3TOw3TgpaRrMjL6yzQV9t8bmaf3vu99eF-E7oHOAGj69JpvZ4wyNuMgYsrgAk0gjiVhDPglmlDBOZGCRdfoZhiOlEIUSTFBw9ruXVd1jbItflfea9cOeOdscC0uT3i-WJOt7fFnV3t10AMO3FKTVdPXqvW6wpve272q8U796MNoq4AsOteEpmvxF8lGj3P7Vm44ztxp8KoebtGVCaLv_nWKPhbP22xJ8s3LKpvnxALnnkQGIDKlEVSWmkb7EipV8TgFpWiiDSgjQJpUxUYrw_7OREQhqBLJTaUSPkWP593edd-jHnxx7EbXhpcFS9IYYs5THqiHM2W11kXvbKPcqUhF2JKS_wI6PGZ0</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bodnarchuk, Yadviga V.</creator><creator>Gainutdinov, Radmir V.</creator><creator>Volk, Tatyana R.</creator><creator>Chen, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9277-9810</orcidid><orcidid>https://orcid.org/0000-0003-1537-8914</orcidid></search><sort><creationdate>20220801</creationdate><title>Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals</title><author>Bodnarchuk, Yadviga V. ; Gainutdinov, Radmir V. ; Volk, Tatyana R. ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-4f114fbf708be04cb1dad3591aa06ef1af718f9a5feaf21af76748f9d683fda63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Domain walls</topic><topic>Domains</topic><topic>ferroelectric domains</topic><topic>Ferroelectricity</topic><topic>helium implantation</topic><topic>Hysteresis</topic><topic>Hysteresis loops</topic><topic>Ion implantation</topic><topic>lithium niobate</topic><topic>Lithium niobates</topic><topic>Optical properties</topic><topic>Optical refraction</topic><topic>Optical surface waves</topic><topic>Optical variables control</topic><topic>Optical waveguides</topic><topic>Spatial distribution</topic><topic>Surface waves</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodnarchuk, Yadviga V.</creatorcontrib><creatorcontrib>Gainutdinov, Radmir V.</creatorcontrib><creatorcontrib>Volk, Tatyana R.</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bodnarchuk, Yadviga V.</au><au>Gainutdinov, Radmir V.</au><au>Volk, Tatyana R.</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>40</volume><issue>15</issue><spage>5231</spage><epage>5235</epage><pages>5231-5235</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a He-implanted layer provides an abrupt boundary of the waveguide. We describe the AFM-tip domain writing in planar He-LiNbO 3 formed on the polar surface of LiNbO 3 plates. The data obtained are compared to the characteristics of AFM-tip domain writing in LNOI (LiNbO 3 -on-insulator). This comparison is justified by the fact that LNOI represents a waveguide derived from He-LiNbO 3 . The writing characteristics in LNOI and He-LiNbO 3 are qualitatively similar, namely the dependences of the domain diameter on AFM-tip voltages U tip and exposure times t p are described by the linear and power laws, respectively. However, in He-LiNbO 3 these dependences are less steep. A striking difference is manifested in the ferroelectric hysteresis loops. In (21) He-LiNbO 3 their characteristics and spatial distribution depend on t p , whereas in LNOI the loops are spatially uniform and frequency independent. These distinctions in the domain formation in two related media can be accounted for by the fact that on contrast to LNOI, domain (25) walls in He-LiNbO 3 are pinned on the structurally damaged layer inherent in this waveguide.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3175021</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9277-9810</orcidid><orcidid>https://orcid.org/0000-0003-1537-8914</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2022-08, Vol.40 (15), p.5231-5235
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2695153393
source IEEE Electronic Library (IEL)
subjects Atomic force microscopy
Domain walls
Domains
ferroelectric domains
Ferroelectricity
helium implantation
Hysteresis
Hysteresis loops
Ion implantation
lithium niobate
Lithium niobates
Optical properties
Optical refraction
Optical surface waves
Optical variables control
Optical waveguides
Spatial distribution
Surface waves
Writing
title Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microdomain%20Patterns%20Written%20by%20AFM-Tip%20Voltages%20in%20He-Implanted%20Optical%20Waveguides%20Formed%20on%20Z-Cut%20LiNbO3%20Crystals&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Bodnarchuk,%20Yadviga%20V.&rft.date=2022-08-01&rft.volume=40&rft.issue=15&rft.spage=5231&rft.epage=5235&rft.pages=5231-5235&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3175021&rft_dat=%3Cproquest_RIE%3E2695153393%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695153393&rft_id=info:pmid/&rft_ieee_id=9774888&rfr_iscdi=true