Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals
Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a H...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2022-08, Vol.40 (15), p.5231-5235 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5235 |
---|---|
container_issue | 15 |
container_start_page | 5231 |
container_title | Journal of lightwave technology |
container_volume | 40 |
creator | Bodnarchuk, Yadviga V. Gainutdinov, Radmir V. Volk, Tatyana R. Chen, Feng |
description | Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a He-implanted layer provides an abrupt boundary of the waveguide. We describe the AFM-tip domain writing in planar He-LiNbO 3 formed on the polar surface of LiNbO 3 plates. The data obtained are compared to the characteristics of AFM-tip domain writing in LNOI (LiNbO 3 -on-insulator). This comparison is justified by the fact that LNOI represents a waveguide derived from He-LiNbO 3 . The writing characteristics in LNOI and He-LiNbO 3 are qualitatively similar, namely the dependences of the domain diameter on AFM-tip voltages U tip and exposure times t p are described by the linear and power laws, respectively. However, in He-LiNbO 3 these dependences are less steep. A striking difference is manifested in the ferroelectric hysteresis loops. In (21) He-LiNbO 3 their characteristics and spatial distribution depend on t p , whereas in LNOI the loops are spatially uniform and frequency independent. These distinctions in the domain formation in two related media can be accounted for by the fact that on contrast to LNOI, domain (25) walls in He-LiNbO 3 are pinned on the structurally damaged layer inherent in this waveguide. |
doi_str_mv | 10.1109/JLT.2022.3175021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2695153393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9774888</ieee_id><sourcerecordid>2695153393</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-4f114fbf708be04cb1dad3591aa06ef1af718f9a5feaf21af76748f9d683fda63</originalsourceid><addsrcrecordid>eNotjc9LwzAcxYMoOKd3wUvAc2a-Sdukx1Gcm3TOw3TgpaRrMjL6yzQV9t8bmaf3vu99eF-E7oHOAGj69JpvZ4wyNuMgYsrgAk0gjiVhDPglmlDBOZGCRdfoZhiOlEIUSTFBw9ruXVd1jbItflfea9cOeOdscC0uT3i-WJOt7fFnV3t10AMO3FKTVdPXqvW6wpve272q8U796MNoq4AsOteEpmvxF8lGj3P7Vm44ztxp8KoebtGVCaLv_nWKPhbP22xJ8s3LKpvnxALnnkQGIDKlEVSWmkb7EipV8TgFpWiiDSgjQJpUxUYrw_7OREQhqBLJTaUSPkWP593edd-jHnxx7EbXhpcFS9IYYs5THqiHM2W11kXvbKPcqUhF2JKS_wI6PGZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695153393</pqid></control><display><type>article</type><title>Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals</title><source>IEEE Electronic Library (IEL)</source><creator>Bodnarchuk, Yadviga V. ; Gainutdinov, Radmir V. ; Volk, Tatyana R. ; Chen, Feng</creator><creatorcontrib>Bodnarchuk, Yadviga V. ; Gainutdinov, Radmir V. ; Volk, Tatyana R. ; Chen, Feng</creatorcontrib><description>Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a He-implanted layer provides an abrupt boundary of the waveguide. We describe the AFM-tip domain writing in planar He-LiNbO 3 formed on the polar surface of LiNbO 3 plates. The data obtained are compared to the characteristics of AFM-tip domain writing in LNOI (LiNbO 3 -on-insulator). This comparison is justified by the fact that LNOI represents a waveguide derived from He-LiNbO 3 . The writing characteristics in LNOI and He-LiNbO 3 are qualitatively similar, namely the dependences of the domain diameter on AFM-tip voltages U tip and exposure times t p are described by the linear and power laws, respectively. However, in He-LiNbO 3 these dependences are less steep. A striking difference is manifested in the ferroelectric hysteresis loops. In (21) He-LiNbO 3 their characteristics and spatial distribution depend on t p , whereas in LNOI the loops are spatially uniform and frequency independent. These distinctions in the domain formation in two related media can be accounted for by the fact that on contrast to LNOI, domain (25) walls in He-LiNbO 3 are pinned on the structurally damaged layer inherent in this waveguide.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2022.3175021</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic force microscopy ; Domain walls ; Domains ; ferroelectric domains ; Ferroelectricity ; helium implantation ; Hysteresis ; Hysteresis loops ; Ion implantation ; lithium niobate ; Lithium niobates ; Optical properties ; Optical refraction ; Optical surface waves ; Optical variables control ; Optical waveguides ; Spatial distribution ; Surface waves ; Writing</subject><ispartof>Journal of lightwave technology, 2022-08, Vol.40 (15), p.5231-5235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9277-9810 ; 0000-0003-1537-8914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9774888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9774888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bodnarchuk, Yadviga V.</creatorcontrib><creatorcontrib>Gainutdinov, Radmir V.</creatorcontrib><creatorcontrib>Volk, Tatyana R.</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a He-implanted layer provides an abrupt boundary of the waveguide. We describe the AFM-tip domain writing in planar He-LiNbO 3 formed on the polar surface of LiNbO 3 plates. The data obtained are compared to the characteristics of AFM-tip domain writing in LNOI (LiNbO 3 -on-insulator). This comparison is justified by the fact that LNOI represents a waveguide derived from He-LiNbO 3 . The writing characteristics in LNOI and He-LiNbO 3 are qualitatively similar, namely the dependences of the domain diameter on AFM-tip voltages U tip and exposure times t p are described by the linear and power laws, respectively. However, in He-LiNbO 3 these dependences are less steep. A striking difference is manifested in the ferroelectric hysteresis loops. In (21) He-LiNbO 3 their characteristics and spatial distribution depend on t p , whereas in LNOI the loops are spatially uniform and frequency independent. These distinctions in the domain formation in two related media can be accounted for by the fact that on contrast to LNOI, domain (25) walls in He-LiNbO 3 are pinned on the structurally damaged layer inherent in this waveguide.</description><subject>Atomic force microscopy</subject><subject>Domain walls</subject><subject>Domains</subject><subject>ferroelectric domains</subject><subject>Ferroelectricity</subject><subject>helium implantation</subject><subject>Hysteresis</subject><subject>Hysteresis loops</subject><subject>Ion implantation</subject><subject>lithium niobate</subject><subject>Lithium niobates</subject><subject>Optical properties</subject><subject>Optical refraction</subject><subject>Optical surface waves</subject><subject>Optical variables control</subject><subject>Optical waveguides</subject><subject>Spatial distribution</subject><subject>Surface waves</subject><subject>Writing</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjc9LwzAcxYMoOKd3wUvAc2a-Sdukx1Gcm3TOw3TgpaRrMjL6yzQV9t8bmaf3vu99eF-E7oHOAGj69JpvZ4wyNuMgYsrgAk0gjiVhDPglmlDBOZGCRdfoZhiOlEIUSTFBw9ruXVd1jbItflfea9cOeOdscC0uT3i-WJOt7fFnV3t10AMO3FKTVdPXqvW6wpve272q8U796MNoq4AsOteEpmvxF8lGj3P7Vm44ztxp8KoebtGVCaLv_nWKPhbP22xJ8s3LKpvnxALnnkQGIDKlEVSWmkb7EipV8TgFpWiiDSgjQJpUxUYrw_7OREQhqBLJTaUSPkWP593edd-jHnxx7EbXhpcFS9IYYs5THqiHM2W11kXvbKPcqUhF2JKS_wI6PGZ0</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bodnarchuk, Yadviga V.</creator><creator>Gainutdinov, Radmir V.</creator><creator>Volk, Tatyana R.</creator><creator>Chen, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9277-9810</orcidid><orcidid>https://orcid.org/0000-0003-1537-8914</orcidid></search><sort><creationdate>20220801</creationdate><title>Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals</title><author>Bodnarchuk, Yadviga V. ; Gainutdinov, Radmir V. ; Volk, Tatyana R. ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-4f114fbf708be04cb1dad3591aa06ef1af718f9a5feaf21af76748f9d683fda63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Domain walls</topic><topic>Domains</topic><topic>ferroelectric domains</topic><topic>Ferroelectricity</topic><topic>helium implantation</topic><topic>Hysteresis</topic><topic>Hysteresis loops</topic><topic>Ion implantation</topic><topic>lithium niobate</topic><topic>Lithium niobates</topic><topic>Optical properties</topic><topic>Optical refraction</topic><topic>Optical surface waves</topic><topic>Optical variables control</topic><topic>Optical waveguides</topic><topic>Spatial distribution</topic><topic>Surface waves</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodnarchuk, Yadviga V.</creatorcontrib><creatorcontrib>Gainutdinov, Radmir V.</creatorcontrib><creatorcontrib>Volk, Tatyana R.</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bodnarchuk, Yadviga V.</au><au>Gainutdinov, Radmir V.</au><au>Volk, Tatyana R.</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>40</volume><issue>15</issue><spage>5231</spage><epage>5235</epage><pages>5231-5235</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Implantation of He + -ions is an attractive method of creating optical waveguides in LiNbO 3 . The advantages of this method are that, firstly, the main optical characteristics of He - implanted waveguides (denoted below as He-LiNbO 3 ) are identical to those of the bulk LiNbO 3 , and, secondly, a He-implanted layer provides an abrupt boundary of the waveguide. We describe the AFM-tip domain writing in planar He-LiNbO 3 formed on the polar surface of LiNbO 3 plates. The data obtained are compared to the characteristics of AFM-tip domain writing in LNOI (LiNbO 3 -on-insulator). This comparison is justified by the fact that LNOI represents a waveguide derived from He-LiNbO 3 . The writing characteristics in LNOI and He-LiNbO 3 are qualitatively similar, namely the dependences of the domain diameter on AFM-tip voltages U tip and exposure times t p are described by the linear and power laws, respectively. However, in He-LiNbO 3 these dependences are less steep. A striking difference is manifested in the ferroelectric hysteresis loops. In (21) He-LiNbO 3 their characteristics and spatial distribution depend on t p , whereas in LNOI the loops are spatially uniform and frequency independent. These distinctions in the domain formation in two related media can be accounted for by the fact that on contrast to LNOI, domain (25) walls in He-LiNbO 3 are pinned on the structurally damaged layer inherent in this waveguide.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2022.3175021</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9277-9810</orcidid><orcidid>https://orcid.org/0000-0003-1537-8914</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2022-08, Vol.40 (15), p.5231-5235 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_2695153393 |
source | IEEE Electronic Library (IEL) |
subjects | Atomic force microscopy Domain walls Domains ferroelectric domains Ferroelectricity helium implantation Hysteresis Hysteresis loops Ion implantation lithium niobate Lithium niobates Optical properties Optical refraction Optical surface waves Optical variables control Optical waveguides Spatial distribution Surface waves Writing |
title | Microdomain Patterns Written by AFM-Tip Voltages in He-Implanted Optical Waveguides Formed on Z-Cut LiNbO3 Crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microdomain%20Patterns%20Written%20by%20AFM-Tip%20Voltages%20in%20He-Implanted%20Optical%20Waveguides%20Formed%20on%20Z-Cut%20LiNbO3%20Crystals&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Bodnarchuk,%20Yadviga%20V.&rft.date=2022-08-01&rft.volume=40&rft.issue=15&rft.spage=5231&rft.epage=5235&rft.pages=5231-5235&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2022.3175021&rft_dat=%3Cproquest_RIE%3E2695153393%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695153393&rft_id=info:pmid/&rft_ieee_id=9774888&rfr_iscdi=true |