The Modeling of Magnetic Detection of Iron Oxide Nanoparticles in the Stream of Patient-Specific Artery With Stenotic Lesion: The Effects of Vessel Geometry and Particle Concentration

Magnetic nanoparticles (MNPs) prepared as stable colloidal suspensions dispersed in water have attracted special interest for biological applications. MNPs of iron oxide synthesized by a laser target evaporation (LTE) technique are excellent candidates for biomedical purposes. Magnetic fluid flowing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2022-08, Vol.58 (8), p.1-5
Hauptverfasser: Kozlov, N. V., Volchkov, S. O., Blyakhman, F. A., Chestukhin, V. V., Kurlyandskaya, G. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 8
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 58
creator Kozlov, N. V.
Volchkov, S. O.
Blyakhman, F. A.
Chestukhin, V. V.
Kurlyandskaya, G. V.
description Magnetic nanoparticles (MNPs) prepared as stable colloidal suspensions dispersed in water have attracted special interest for biological applications. MNPs of iron oxide synthesized by a laser target evaporation (LTE) technique are excellent candidates for biomedical purposes. Magnetic fluid flowing through the blood vessel creates magnetic fields which can be detected by magnetic field sensor. In this work, the finite element method modeling (FEM) was used for calculation of the flow of ferrofluid containing magnetic iron oxide MNPs through a real coronary artery reconstructed from the routine angiography examination of a patient. The main objective of the study is to validate the possibility of the application of magnetic field sensor for the blood vessel geometry evaluation. The contribution of the magnetic susceptibility of MNPs, blood vessel diameter, and particular geometry as well as the orientation of the magnetic field sensor working on the principle of giant magnetoimpedance (GMI) were comparatively analyzed.
doi_str_mv 10.1109/TMAG.2022.3162884
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2695152681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743915</ieee_id><sourcerecordid>2695152681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-7ed91870d6384df825aaade949ecf7f71d05844dbe0efb55b38e5a2eae5e6bc53</originalsourceid><addsrcrecordid>eNo9kdFOIyEYhYlZk-3qPsDGG5K9ngoMzMDeNV2tJu26iVUvJ3T4UUwLXcBEn8zXE1KzVwTyne-QHIR-UDKllKjz9Wq2mDLC2LSlHZOSH6EJVZw2hHTqC5oQQmWjeMe_om8pPZcrF5RM0Pv6CfAqGNg6_4iDxSv96CG7Ef-GDGN2wdfX61jOm1dnAP_RPux1LMgWEnYe52K4zRH0rpJ_dXbgc3O7h9HZ4pnFDPENP7j8VDDwocqXkIr5F67tF9aWolTD95ASbPECwg5yCWlvivDQhefBj8Ucdf3UKTq2epvg--d5gu4uL9bzq2Z5s7iez5bNyFibmx6MorInpmslN1YyobU2oLiC0fa2p4YIybnZAAG7EWLTShCagQYB3WYU7Qn6efDuY_j3AikPz-El-lI5sE4JKlgnaaHogRpjSCmCHfbR7XR8GygZ6j5D3Weo-wyf-5TM2SHjAOA_r3reKiraDzcGj40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695152681</pqid></control><display><type>article</type><title>The Modeling of Magnetic Detection of Iron Oxide Nanoparticles in the Stream of Patient-Specific Artery With Stenotic Lesion: The Effects of Vessel Geometry and Particle Concentration</title><source>IEEE Electronic Library (IEL)</source><creator>Kozlov, N. V. ; Volchkov, S. O. ; Blyakhman, F. A. ; Chestukhin, V. V. ; Kurlyandskaya, G. V.</creator><creatorcontrib>Kozlov, N. V. ; Volchkov, S. O. ; Blyakhman, F. A. ; Chestukhin, V. V. ; Kurlyandskaya, G. V.</creatorcontrib><description>Magnetic nanoparticles (MNPs) prepared as stable colloidal suspensions dispersed in water have attracted special interest for biological applications. MNPs of iron oxide synthesized by a laser target evaporation (LTE) technique are excellent candidates for biomedical purposes. Magnetic fluid flowing through the blood vessel creates magnetic fields which can be detected by magnetic field sensor. In this work, the finite element method modeling (FEM) was used for calculation of the flow of ferrofluid containing magnetic iron oxide MNPs through a real coronary artery reconstructed from the routine angiography examination of a patient. The main objective of the study is to validate the possibility of the application of magnetic field sensor for the blood vessel geometry evaluation. The contribution of the magnetic susceptibility of MNPs, blood vessel diameter, and particular geometry as well as the orientation of the magnetic field sensor working on the principle of giant magnetoimpedance (GMI) were comparatively analyzed.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2022.3162884</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angiography ; Blood vessels ; Coronary vessel ; ferrofluid ; Ferrofluids ; Finite element method ; finite element modeling (FEM) ; Geometry ; Giant magnetoimpedance ; giant magnetoimpedance (GMI) ; Iron ; Iron oxides ; magnetic field sensor ; Magnetic fields ; Magnetic fluids ; Magnetic hysteresis ; Magnetic permeability ; Magnetic susceptibility ; Magnetism ; Mathematical models ; Modelling ; Nanoparticles</subject><ispartof>IEEE transactions on magnetics, 2022-08, Vol.58 (8), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-7ed91870d6384df825aaade949ecf7f71d05844dbe0efb55b38e5a2eae5e6bc53</citedby><cites>FETCH-LOGICAL-c223t-7ed91870d6384df825aaade949ecf7f71d05844dbe0efb55b38e5a2eae5e6bc53</cites><orcidid>0000-0002-3712-1637 ; 0000-0003-0548-5310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743915$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9743915$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kozlov, N. V.</creatorcontrib><creatorcontrib>Volchkov, S. O.</creatorcontrib><creatorcontrib>Blyakhman, F. A.</creatorcontrib><creatorcontrib>Chestukhin, V. V.</creatorcontrib><creatorcontrib>Kurlyandskaya, G. V.</creatorcontrib><title>The Modeling of Magnetic Detection of Iron Oxide Nanoparticles in the Stream of Patient-Specific Artery With Stenotic Lesion: The Effects of Vessel Geometry and Particle Concentration</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Magnetic nanoparticles (MNPs) prepared as stable colloidal suspensions dispersed in water have attracted special interest for biological applications. MNPs of iron oxide synthesized by a laser target evaporation (LTE) technique are excellent candidates for biomedical purposes. Magnetic fluid flowing through the blood vessel creates magnetic fields which can be detected by magnetic field sensor. In this work, the finite element method modeling (FEM) was used for calculation of the flow of ferrofluid containing magnetic iron oxide MNPs through a real coronary artery reconstructed from the routine angiography examination of a patient. The main objective of the study is to validate the possibility of the application of magnetic field sensor for the blood vessel geometry evaluation. The contribution of the magnetic susceptibility of MNPs, blood vessel diameter, and particular geometry as well as the orientation of the magnetic field sensor working on the principle of giant magnetoimpedance (GMI) were comparatively analyzed.</description><subject>Angiography</subject><subject>Blood vessels</subject><subject>Coronary vessel</subject><subject>ferrofluid</subject><subject>Ferrofluids</subject><subject>Finite element method</subject><subject>finite element modeling (FEM)</subject><subject>Geometry</subject><subject>Giant magnetoimpedance</subject><subject>giant magnetoimpedance (GMI)</subject><subject>Iron</subject><subject>Iron oxides</subject><subject>magnetic field sensor</subject><subject>Magnetic fields</subject><subject>Magnetic fluids</subject><subject>Magnetic hysteresis</subject><subject>Magnetic permeability</subject><subject>Magnetic susceptibility</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nanoparticles</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kdFOIyEYhYlZk-3qPsDGG5K9ngoMzMDeNV2tJu26iVUvJ3T4UUwLXcBEn8zXE1KzVwTyne-QHIR-UDKllKjz9Wq2mDLC2LSlHZOSH6EJVZw2hHTqC5oQQmWjeMe_om8pPZcrF5RM0Pv6CfAqGNg6_4iDxSv96CG7Ef-GDGN2wdfX61jOm1dnAP_RPux1LMgWEnYe52K4zRH0rpJ_dXbgc3O7h9HZ4pnFDPENP7j8VDDwocqXkIr5F67tF9aWolTD95ASbPECwg5yCWlvivDQhefBj8Ucdf3UKTq2epvg--d5gu4uL9bzq2Z5s7iez5bNyFibmx6MorInpmslN1YyobU2oLiC0fa2p4YIybnZAAG7EWLTShCagQYB3WYU7Qn6efDuY_j3AikPz-El-lI5sE4JKlgnaaHogRpjSCmCHfbR7XR8GygZ6j5D3Weo-wyf-5TM2SHjAOA_r3reKiraDzcGj40</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kozlov, N. V.</creator><creator>Volchkov, S. O.</creator><creator>Blyakhman, F. A.</creator><creator>Chestukhin, V. V.</creator><creator>Kurlyandskaya, G. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3712-1637</orcidid><orcidid>https://orcid.org/0000-0003-0548-5310</orcidid></search><sort><creationdate>20220801</creationdate><title>The Modeling of Magnetic Detection of Iron Oxide Nanoparticles in the Stream of Patient-Specific Artery With Stenotic Lesion: The Effects of Vessel Geometry and Particle Concentration</title><author>Kozlov, N. V. ; Volchkov, S. O. ; Blyakhman, F. A. ; Chestukhin, V. V. ; Kurlyandskaya, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-7ed91870d6384df825aaade949ecf7f71d05844dbe0efb55b38e5a2eae5e6bc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angiography</topic><topic>Blood vessels</topic><topic>Coronary vessel</topic><topic>ferrofluid</topic><topic>Ferrofluids</topic><topic>Finite element method</topic><topic>finite element modeling (FEM)</topic><topic>Geometry</topic><topic>Giant magnetoimpedance</topic><topic>giant magnetoimpedance (GMI)</topic><topic>Iron</topic><topic>Iron oxides</topic><topic>magnetic field sensor</topic><topic>Magnetic fields</topic><topic>Magnetic fluids</topic><topic>Magnetic hysteresis</topic><topic>Magnetic permeability</topic><topic>Magnetic susceptibility</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nanoparticles</topic><toplevel>online_resources</toplevel><creatorcontrib>Kozlov, N. V.</creatorcontrib><creatorcontrib>Volchkov, S. O.</creatorcontrib><creatorcontrib>Blyakhman, F. A.</creatorcontrib><creatorcontrib>Chestukhin, V. V.</creatorcontrib><creatorcontrib>Kurlyandskaya, G. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kozlov, N. V.</au><au>Volchkov, S. O.</au><au>Blyakhman, F. A.</au><au>Chestukhin, V. V.</au><au>Kurlyandskaya, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Modeling of Magnetic Detection of Iron Oxide Nanoparticles in the Stream of Patient-Specific Artery With Stenotic Lesion: The Effects of Vessel Geometry and Particle Concentration</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>58</volume><issue>8</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Magnetic nanoparticles (MNPs) prepared as stable colloidal suspensions dispersed in water have attracted special interest for biological applications. MNPs of iron oxide synthesized by a laser target evaporation (LTE) technique are excellent candidates for biomedical purposes. Magnetic fluid flowing through the blood vessel creates magnetic fields which can be detected by magnetic field sensor. In this work, the finite element method modeling (FEM) was used for calculation of the flow of ferrofluid containing magnetic iron oxide MNPs through a real coronary artery reconstructed from the routine angiography examination of a patient. The main objective of the study is to validate the possibility of the application of magnetic field sensor for the blood vessel geometry evaluation. The contribution of the magnetic susceptibility of MNPs, blood vessel diameter, and particular geometry as well as the orientation of the magnetic field sensor working on the principle of giant magnetoimpedance (GMI) were comparatively analyzed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2022.3162884</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3712-1637</orcidid><orcidid>https://orcid.org/0000-0003-0548-5310</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2022-08, Vol.58 (8), p.1-5
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2695152681
source IEEE Electronic Library (IEL)
subjects Angiography
Blood vessels
Coronary vessel
ferrofluid
Ferrofluids
Finite element method
finite element modeling (FEM)
Geometry
Giant magnetoimpedance
giant magnetoimpedance (GMI)
Iron
Iron oxides
magnetic field sensor
Magnetic fields
Magnetic fluids
Magnetic hysteresis
Magnetic permeability
Magnetic susceptibility
Magnetism
Mathematical models
Modelling
Nanoparticles
title The Modeling of Magnetic Detection of Iron Oxide Nanoparticles in the Stream of Patient-Specific Artery With Stenotic Lesion: The Effects of Vessel Geometry and Particle Concentration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Modeling%20of%20Magnetic%20Detection%20of%20Iron%20Oxide%20Nanoparticles%20in%20the%20Stream%20of%20Patient-Specific%20Artery%20With%20Stenotic%20Lesion:%20The%20Effects%20of%20Vessel%20Geometry%20and%20Particle%20Concentration&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kozlov,%20N.%20V.&rft.date=2022-08-01&rft.volume=58&rft.issue=8&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2022.3162884&rft_dat=%3Cproquest_RIE%3E2695152681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695152681&rft_id=info:pmid/&rft_ieee_id=9743915&rfr_iscdi=true