Robust and Efficient Fault Diagnosis of mm-Wave Active Phased Arrays Using Baseband Signal
One key communication block in 5G and 6G radios is the active phased array (APA). To ensure reliable operation, efficient and timely fault diagnosis of APAs on-site is crucial. To date, fault diagnosis has relied on measurement of frequency domain radiation patterns using costly equipment and multip...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2022-07, Vol.70 (7), p.5044-5053 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5053 |
---|---|
container_issue | 7 |
container_start_page | 5044 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 70 |
creator | Nielsen, Martin H. Zhang, Yufeng Xue, Changbin Ren, Jian Yin, Yingzeng Shen, Ming Pedersen, Gert Frolund |
description | One key communication block in 5G and 6G radios is the active phased array (APA). To ensure reliable operation, efficient and timely fault diagnosis of APAs on-site is crucial. To date, fault diagnosis has relied on measurement of frequency domain radiation patterns using costly equipment and multiple strictly controlled measurement probes, which are time consuming, complex, and therefore infeasible for on-site deployment. This article proposes a novel method exploiting a deep neural network (DNN) tailored to extract the features hidden in the baseband in-phase and quadrature signals for classifying the different faults. It requires only a single probe in one measurement point for fast and accurate diagnosis of the faulty elements and components in APAs. Validation of the proposed method is done using a commercial 28 GHz APA. Accuracies of 99% and 80% have been demonstrated for single- and multi-element failure detection, respectively. Three different test scenarios are investigated: ON-OFF antenna elements, phase variations, and magnitude attenuation variations. In a low signal-to-noise ratio (SNR) of 4 dB, stable fault detection accuracy above 90% is maintained. This is all achieved with a detection time of milliseconds (e.g., 6 ms), showing a high potential for on-site deployment. |
doi_str_mv | 10.1109/TAP.2022.3179898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2695150707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9794293</ieee_id><sourcerecordid>2695150707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b89047b657afb9f9df3c16cb215c229147768b36da2d20c83d2be08cc1dee63f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8zEyS5VhbFQoWbVHchCST1JR2RpMZof_elBZXj_c49_I4AFxjNMIYibtFNR8RRMiIYia44CdggIuCZ4QQfAoGCGGeCVJ-nIOLGNdpzXmeD8Dna6v72EHV1HDinDfeNh2cqn7TwQevVk0bfYStg9tt9q5-LaxM59OYf6loa1iFoHYRLqNvVvA-nfS-6M2vGrW5BGdObaK9Os4hWE4ni_FTNnt5fB5Xs8wQgbtMc4FypsuCKaeFE7WjBpdGE1wYkoicsZJrWtaK1AQZTmuiLeLG4Nrakjo6BLeH3u_Q_vQ2dnLd9iE9ECUpRYELxBBLFDpQJrQxBuvkd_BbFXYSI7k3KJNBuTcojwZT5OYQ8dbaf1wwkRNB6R9zc2wG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695150707</pqid></control><display><type>article</type><title>Robust and Efficient Fault Diagnosis of mm-Wave Active Phased Arrays Using Baseband Signal</title><source>IEEE Electronic Library (IEL)</source><creator>Nielsen, Martin H. ; Zhang, Yufeng ; Xue, Changbin ; Ren, Jian ; Yin, Yingzeng ; Shen, Ming ; Pedersen, Gert Frolund</creator><creatorcontrib>Nielsen, Martin H. ; Zhang, Yufeng ; Xue, Changbin ; Ren, Jian ; Yin, Yingzeng ; Shen, Ming ; Pedersen, Gert Frolund</creatorcontrib><description>One key communication block in 5G and 6G radios is the active phased array (APA). To ensure reliable operation, efficient and timely fault diagnosis of APAs on-site is crucial. To date, fault diagnosis has relied on measurement of frequency domain radiation patterns using costly equipment and multiple strictly controlled measurement probes, which are time consuming, complex, and therefore infeasible for on-site deployment. This article proposes a novel method exploiting a deep neural network (DNN) tailored to extract the features hidden in the baseband in-phase and quadrature signals for classifying the different faults. It requires only a single probe in one measurement point for fast and accurate diagnosis of the faulty elements and components in APAs. Validation of the proposed method is done using a commercial 28 GHz APA. Accuracies of 99% and 80% have been demonstrated for single- and multi-element failure detection, respectively. Three different test scenarios are investigated: ON-OFF antenna elements, phase variations, and magnitude attenuation variations. In a low signal-to-noise ratio (SNR) of 4 dB, stable fault detection accuracy above 90% is maintained. This is all achieved with a detection time of milliseconds (e.g., 6 ms), showing a high potential for on-site deployment.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3179898</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog system fault diagnosis ; Antenna arrays ; Antenna measurements ; artificial intelligence ; Artificial neural networks ; Baseband ; communication system fault diagnosis ; Control equipment ; Failure detection ; Fault detection ; Fault diagnosis ; Feature extraction ; Mathematical models ; Millimeter waves ; millimeter-Wave (mm-Wave) antenna arrays ; Onsite ; Phased arrays ; Probes ; Quadratures ; Signal classification ; Signal to noise ratio</subject><ispartof>IEEE transactions on antennas and propagation, 2022-07, Vol.70 (7), p.5044-5053</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b89047b657afb9f9df3c16cb215c229147768b36da2d20c83d2be08cc1dee63f3</citedby><cites>FETCH-LOGICAL-c291t-b89047b657afb9f9df3c16cb215c229147768b36da2d20c83d2be08cc1dee63f3</cites><orcidid>0000-0003-0865-5434 ; 0000-0001-9899-5963 ; 0000-0002-9388-3513 ; 0000-0002-6570-7387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9794293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9794293$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nielsen, Martin H.</creatorcontrib><creatorcontrib>Zhang, Yufeng</creatorcontrib><creatorcontrib>Xue, Changbin</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><creatorcontrib>Yin, Yingzeng</creatorcontrib><creatorcontrib>Shen, Ming</creatorcontrib><creatorcontrib>Pedersen, Gert Frolund</creatorcontrib><title>Robust and Efficient Fault Diagnosis of mm-Wave Active Phased Arrays Using Baseband Signal</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>One key communication block in 5G and 6G radios is the active phased array (APA). To ensure reliable operation, efficient and timely fault diagnosis of APAs on-site is crucial. To date, fault diagnosis has relied on measurement of frequency domain radiation patterns using costly equipment and multiple strictly controlled measurement probes, which are time consuming, complex, and therefore infeasible for on-site deployment. This article proposes a novel method exploiting a deep neural network (DNN) tailored to extract the features hidden in the baseband in-phase and quadrature signals for classifying the different faults. It requires only a single probe in one measurement point for fast and accurate diagnosis of the faulty elements and components in APAs. Validation of the proposed method is done using a commercial 28 GHz APA. Accuracies of 99% and 80% have been demonstrated for single- and multi-element failure detection, respectively. Three different test scenarios are investigated: ON-OFF antenna elements, phase variations, and magnitude attenuation variations. In a low signal-to-noise ratio (SNR) of 4 dB, stable fault detection accuracy above 90% is maintained. This is all achieved with a detection time of milliseconds (e.g., 6 ms), showing a high potential for on-site deployment.</description><subject>Analog system fault diagnosis</subject><subject>Antenna arrays</subject><subject>Antenna measurements</subject><subject>artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Baseband</subject><subject>communication system fault diagnosis</subject><subject>Control equipment</subject><subject>Failure detection</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Mathematical models</subject><subject>Millimeter waves</subject><subject>millimeter-Wave (mm-Wave) antenna arrays</subject><subject>Onsite</subject><subject>Phased arrays</subject><subject>Probes</subject><subject>Quadratures</subject><subject>Signal classification</subject><subject>Signal to noise ratio</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8zEyS5VhbFQoWbVHchCST1JR2RpMZof_elBZXj_c49_I4AFxjNMIYibtFNR8RRMiIYia44CdggIuCZ4QQfAoGCGGeCVJ-nIOLGNdpzXmeD8Dna6v72EHV1HDinDfeNh2cqn7TwQevVk0bfYStg9tt9q5-LaxM59OYf6loa1iFoHYRLqNvVvA-nfS-6M2vGrW5BGdObaK9Os4hWE4ni_FTNnt5fB5Xs8wQgbtMc4FypsuCKaeFE7WjBpdGE1wYkoicsZJrWtaK1AQZTmuiLeLG4Nrakjo6BLeH3u_Q_vQ2dnLd9iE9ECUpRYELxBBLFDpQJrQxBuvkd_BbFXYSI7k3KJNBuTcojwZT5OYQ8dbaf1wwkRNB6R9zc2wG</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Nielsen, Martin H.</creator><creator>Zhang, Yufeng</creator><creator>Xue, Changbin</creator><creator>Ren, Jian</creator><creator>Yin, Yingzeng</creator><creator>Shen, Ming</creator><creator>Pedersen, Gert Frolund</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0865-5434</orcidid><orcidid>https://orcid.org/0000-0001-9899-5963</orcidid><orcidid>https://orcid.org/0000-0002-9388-3513</orcidid><orcidid>https://orcid.org/0000-0002-6570-7387</orcidid></search><sort><creationdate>20220701</creationdate><title>Robust and Efficient Fault Diagnosis of mm-Wave Active Phased Arrays Using Baseband Signal</title><author>Nielsen, Martin H. ; Zhang, Yufeng ; Xue, Changbin ; Ren, Jian ; Yin, Yingzeng ; Shen, Ming ; Pedersen, Gert Frolund</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b89047b657afb9f9df3c16cb215c229147768b36da2d20c83d2be08cc1dee63f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analog system fault diagnosis</topic><topic>Antenna arrays</topic><topic>Antenna measurements</topic><topic>artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Baseband</topic><topic>communication system fault diagnosis</topic><topic>Control equipment</topic><topic>Failure detection</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Mathematical models</topic><topic>Millimeter waves</topic><topic>millimeter-Wave (mm-Wave) antenna arrays</topic><topic>Onsite</topic><topic>Phased arrays</topic><topic>Probes</topic><topic>Quadratures</topic><topic>Signal classification</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, Martin H.</creatorcontrib><creatorcontrib>Zhang, Yufeng</creatorcontrib><creatorcontrib>Xue, Changbin</creatorcontrib><creatorcontrib>Ren, Jian</creatorcontrib><creatorcontrib>Yin, Yingzeng</creatorcontrib><creatorcontrib>Shen, Ming</creatorcontrib><creatorcontrib>Pedersen, Gert Frolund</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nielsen, Martin H.</au><au>Zhang, Yufeng</au><au>Xue, Changbin</au><au>Ren, Jian</au><au>Yin, Yingzeng</au><au>Shen, Ming</au><au>Pedersen, Gert Frolund</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust and Efficient Fault Diagnosis of mm-Wave Active Phased Arrays Using Baseband Signal</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>70</volume><issue>7</issue><spage>5044</spage><epage>5053</epage><pages>5044-5053</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>One key communication block in 5G and 6G radios is the active phased array (APA). To ensure reliable operation, efficient and timely fault diagnosis of APAs on-site is crucial. To date, fault diagnosis has relied on measurement of frequency domain radiation patterns using costly equipment and multiple strictly controlled measurement probes, which are time consuming, complex, and therefore infeasible for on-site deployment. This article proposes a novel method exploiting a deep neural network (DNN) tailored to extract the features hidden in the baseband in-phase and quadrature signals for classifying the different faults. It requires only a single probe in one measurement point for fast and accurate diagnosis of the faulty elements and components in APAs. Validation of the proposed method is done using a commercial 28 GHz APA. Accuracies of 99% and 80% have been demonstrated for single- and multi-element failure detection, respectively. Three different test scenarios are investigated: ON-OFF antenna elements, phase variations, and magnitude attenuation variations. In a low signal-to-noise ratio (SNR) of 4 dB, stable fault detection accuracy above 90% is maintained. This is all achieved with a detection time of milliseconds (e.g., 6 ms), showing a high potential for on-site deployment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3179898</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0865-5434</orcidid><orcidid>https://orcid.org/0000-0001-9899-5963</orcidid><orcidid>https://orcid.org/0000-0002-9388-3513</orcidid><orcidid>https://orcid.org/0000-0002-6570-7387</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2022-07, Vol.70 (7), p.5044-5053 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2695150707 |
source | IEEE Electronic Library (IEL) |
subjects | Analog system fault diagnosis Antenna arrays Antenna measurements artificial intelligence Artificial neural networks Baseband communication system fault diagnosis Control equipment Failure detection Fault detection Fault diagnosis Feature extraction Mathematical models Millimeter waves millimeter-Wave (mm-Wave) antenna arrays Onsite Phased arrays Probes Quadratures Signal classification Signal to noise ratio |
title | Robust and Efficient Fault Diagnosis of mm-Wave Active Phased Arrays Using Baseband Signal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20and%20Efficient%20Fault%20Diagnosis%20of%20mm-Wave%20Active%20Phased%20Arrays%20Using%20Baseband%20Signal&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Nielsen,%20Martin%20H.&rft.date=2022-07-01&rft.volume=70&rft.issue=7&rft.spage=5044&rft.epage=5053&rft.pages=5044-5053&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3179898&rft_dat=%3Cproquest_RIE%3E2695150707%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695150707&rft_id=info:pmid/&rft_ieee_id=9794293&rfr_iscdi=true |