Experimental analysis of turbine‐chamber coupling for wave energy conversion
Summary A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, whe...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2018-12, Vol.42 (15), p.4770-4782 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4782 |
---|---|
container_issue | 15 |
container_start_page | 4770 |
container_title | International journal of energy research |
container_volume | 42 |
creator | George, Aravind Anandanarayanan, R. Suchithra, R. Pattnaik, B. Dudhgaonkar, Prasad Jalihal, Purnima Samad, Abdus |
description | Summary
A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, when reciprocating, generates the oscillatory airflow. At a very low wave height (piston stroke length, |
doi_str_mv | 10.1002/er.4230 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695088162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695088162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3220-6eb2ebb351b435ac341361077e467a63803df999bd5db3582db4e80e655667a73</originalsourceid><addsrcrecordid>eNp10M9Kw0AQBvBFFKxVfIUFDx4kdXY32SRHKfUPFAVR6G3ZTSY1JU3ibtKam4_gM_okbq1XT3P4fgwzHyHnDCYMgF-jnYRcwAEZMUjTgLFwcUhGIKQIUogXx-TEuRWAz1g8Io-zjxZtuca60xXVta4GVzraFLTrrSlr_P78yt702qClWdO3VVkvadFYutUbpFijXQ4-qDdoXdnUp-So0JXDs785Jq-3s5fpfTB_unuY3syDTHAOgUTD0RgRMROKSGciZEIyiGMMZaylSEDkRZqmJo9yrxKemxATQBlF0oNYjMnFfm9rm_ceXadWTW_99U5xmUaQJExyry73KrONcxYL1fpXtR0UA7UrS6FVu7K8vNrLbVnh8B9Ts-df_QPKY2qv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695088162</pqid></control><display><type>article</type><title>Experimental analysis of turbine‐chamber coupling for wave energy conversion</title><source>Access via Wiley Online Library</source><creator>George, Aravind ; Anandanarayanan, R. ; Suchithra, R. ; Pattnaik, B. ; Dudhgaonkar, Prasad ; Jalihal, Purnima ; Samad, Abdus</creator><creatorcontrib>George, Aravind ; Anandanarayanan, R. ; Suchithra, R. ; Pattnaik, B. ; Dudhgaonkar, Prasad ; Jalihal, Purnima ; Samad, Abdus</creatorcontrib><description>Summary
A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, when reciprocating, generates the oscillatory airflow. At a very low wave height (piston stroke length, <0.4 m), the turbine speed is very low. Time series analysis of pressure drop and speed are reported for higher stroke lengths, which shows the rate of increase and decrease in velocity of the turbine. Furthermore, the turbine pressure coefficient and the damping characteristics of the test rig chamber were estimated. Finally, the chamber damping verifies that the turbine‐chamber coupling effect is reciprocal.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.4230</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Air flow ; Coupling ; Cylinders ; Damping ; damping characteristics ; Energy conversion ; oscillating airflow ; Pneumatics ; Pressure ; Pressure drop ; Time series ; Turbine engines ; turbine pressure coefficient ; Turbines ; turbine‐chamber coupling ; Water column ; Wave energy ; wave energy conversion ; Wave height ; Wave power</subject><ispartof>International journal of energy research, 2018-12, Vol.42 (15), p.4770-4782</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3220-6eb2ebb351b435ac341361077e467a63803df999bd5db3582db4e80e655667a73</citedby><cites>FETCH-LOGICAL-c3220-6eb2ebb351b435ac341361077e467a63803df999bd5db3582db4e80e655667a73</cites><orcidid>0000-0002-0343-2234 ; 0000-0002-8877-4101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.4230$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.4230$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>George, Aravind</creatorcontrib><creatorcontrib>Anandanarayanan, R.</creatorcontrib><creatorcontrib>Suchithra, R.</creatorcontrib><creatorcontrib>Pattnaik, B.</creatorcontrib><creatorcontrib>Dudhgaonkar, Prasad</creatorcontrib><creatorcontrib>Jalihal, Purnima</creatorcontrib><creatorcontrib>Samad, Abdus</creatorcontrib><title>Experimental analysis of turbine‐chamber coupling for wave energy conversion</title><title>International journal of energy research</title><description>Summary
A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, when reciprocating, generates the oscillatory airflow. At a very low wave height (piston stroke length, <0.4 m), the turbine speed is very low. Time series analysis of pressure drop and speed are reported for higher stroke lengths, which shows the rate of increase and decrease in velocity of the turbine. Furthermore, the turbine pressure coefficient and the damping characteristics of the test rig chamber were estimated. Finally, the chamber damping verifies that the turbine‐chamber coupling effect is reciprocal.</description><subject>Air flow</subject><subject>Coupling</subject><subject>Cylinders</subject><subject>Damping</subject><subject>damping characteristics</subject><subject>Energy conversion</subject><subject>oscillating airflow</subject><subject>Pneumatics</subject><subject>Pressure</subject><subject>Pressure drop</subject><subject>Time series</subject><subject>Turbine engines</subject><subject>turbine pressure coefficient</subject><subject>Turbines</subject><subject>turbine‐chamber coupling</subject><subject>Water column</subject><subject>Wave energy</subject><subject>wave energy conversion</subject><subject>Wave height</subject><subject>Wave power</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10M9Kw0AQBvBFFKxVfIUFDx4kdXY32SRHKfUPFAVR6G3ZTSY1JU3ibtKam4_gM_okbq1XT3P4fgwzHyHnDCYMgF-jnYRcwAEZMUjTgLFwcUhGIKQIUogXx-TEuRWAz1g8Io-zjxZtuca60xXVta4GVzraFLTrrSlr_P78yt702qClWdO3VVkvadFYutUbpFijXQ4-qDdoXdnUp-So0JXDs785Jq-3s5fpfTB_unuY3syDTHAOgUTD0RgRMROKSGciZEIyiGMMZaylSEDkRZqmJo9yrxKemxATQBlF0oNYjMnFfm9rm_ceXadWTW_99U5xmUaQJExyry73KrONcxYL1fpXtR0UA7UrS6FVu7K8vNrLbVnh8B9Ts-df_QPKY2qv</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>George, Aravind</creator><creator>Anandanarayanan, R.</creator><creator>Suchithra, R.</creator><creator>Pattnaik, B.</creator><creator>Dudhgaonkar, Prasad</creator><creator>Jalihal, Purnima</creator><creator>Samad, Abdus</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0343-2234</orcidid><orcidid>https://orcid.org/0000-0002-8877-4101</orcidid></search><sort><creationdate>201812</creationdate><title>Experimental analysis of turbine‐chamber coupling for wave energy conversion</title><author>George, Aravind ; Anandanarayanan, R. ; Suchithra, R. ; Pattnaik, B. ; Dudhgaonkar, Prasad ; Jalihal, Purnima ; Samad, Abdus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3220-6eb2ebb351b435ac341361077e467a63803df999bd5db3582db4e80e655667a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air flow</topic><topic>Coupling</topic><topic>Cylinders</topic><topic>Damping</topic><topic>damping characteristics</topic><topic>Energy conversion</topic><topic>oscillating airflow</topic><topic>Pneumatics</topic><topic>Pressure</topic><topic>Pressure drop</topic><topic>Time series</topic><topic>Turbine engines</topic><topic>turbine pressure coefficient</topic><topic>Turbines</topic><topic>turbine‐chamber coupling</topic><topic>Water column</topic><topic>Wave energy</topic><topic>wave energy conversion</topic><topic>Wave height</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Aravind</creatorcontrib><creatorcontrib>Anandanarayanan, R.</creatorcontrib><creatorcontrib>Suchithra, R.</creatorcontrib><creatorcontrib>Pattnaik, B.</creatorcontrib><creatorcontrib>Dudhgaonkar, Prasad</creatorcontrib><creatorcontrib>Jalihal, Purnima</creatorcontrib><creatorcontrib>Samad, Abdus</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Aravind</au><au>Anandanarayanan, R.</au><au>Suchithra, R.</au><au>Pattnaik, B.</au><au>Dudhgaonkar, Prasad</au><au>Jalihal, Purnima</au><au>Samad, Abdus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental analysis of turbine‐chamber coupling for wave energy conversion</atitle><jtitle>International journal of energy research</jtitle><date>2018-12</date><risdate>2018</risdate><volume>42</volume><issue>15</issue><spage>4770</spage><epage>4782</epage><pages>4770-4782</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, when reciprocating, generates the oscillatory airflow. At a very low wave height (piston stroke length, <0.4 m), the turbine speed is very low. Time series analysis of pressure drop and speed are reported for higher stroke lengths, which shows the rate of increase and decrease in velocity of the turbine. Furthermore, the turbine pressure coefficient and the damping characteristics of the test rig chamber were estimated. Finally, the chamber damping verifies that the turbine‐chamber coupling effect is reciprocal.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.4230</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0343-2234</orcidid><orcidid>https://orcid.org/0000-0002-8877-4101</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2018-12, Vol.42 (15), p.4770-4782 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2695088162 |
source | Access via Wiley Online Library |
subjects | Air flow Coupling Cylinders Damping damping characteristics Energy conversion oscillating airflow Pneumatics Pressure Pressure drop Time series Turbine engines turbine pressure coefficient Turbines turbine‐chamber coupling Water column Wave energy wave energy conversion Wave height Wave power |
title | Experimental analysis of turbine‐chamber coupling for wave energy conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20analysis%20of%20turbine%E2%80%90chamber%20coupling%20for%20wave%20energy%20conversion&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=George,%20Aravind&rft.date=2018-12&rft.volume=42&rft.issue=15&rft.spage=4770&rft.epage=4782&rft.pages=4770-4782&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.4230&rft_dat=%3Cproquest_cross%3E2695088162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695088162&rft_id=info:pmid/&rfr_iscdi=true |