Experimental analysis of turbine‐chamber coupling for wave energy conversion

Summary A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2018-12, Vol.42 (15), p.4770-4782
Hauptverfasser: George, Aravind, Anandanarayanan, R., Suchithra, R., Pattnaik, B., Dudhgaonkar, Prasad, Jalihal, Purnima, Samad, Abdus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4782
container_issue 15
container_start_page 4770
container_title International journal of energy research
container_volume 42
creator George, Aravind
Anandanarayanan, R.
Suchithra, R.
Pattnaik, B.
Dudhgaonkar, Prasad
Jalihal, Purnima
Samad, Abdus
description Summary A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, when reciprocating, generates the oscillatory airflow. At a very low wave height (piston stroke length,
doi_str_mv 10.1002/er.4230
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695088162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695088162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3220-6eb2ebb351b435ac341361077e467a63803df999bd5db3582db4e80e655667a73</originalsourceid><addsrcrecordid>eNp10M9Kw0AQBvBFFKxVfIUFDx4kdXY32SRHKfUPFAVR6G3ZTSY1JU3ibtKam4_gM_okbq1XT3P4fgwzHyHnDCYMgF-jnYRcwAEZMUjTgLFwcUhGIKQIUogXx-TEuRWAz1g8Io-zjxZtuca60xXVta4GVzraFLTrrSlr_P78yt702qClWdO3VVkvadFYutUbpFijXQ4-qDdoXdnUp-So0JXDs785Jq-3s5fpfTB_unuY3syDTHAOgUTD0RgRMROKSGciZEIyiGMMZaylSEDkRZqmJo9yrxKemxATQBlF0oNYjMnFfm9rm_ceXadWTW_99U5xmUaQJExyry73KrONcxYL1fpXtR0UA7UrS6FVu7K8vNrLbVnh8B9Ts-df_QPKY2qv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695088162</pqid></control><display><type>article</type><title>Experimental analysis of turbine‐chamber coupling for wave energy conversion</title><source>Access via Wiley Online Library</source><creator>George, Aravind ; Anandanarayanan, R. ; Suchithra, R. ; Pattnaik, B. ; Dudhgaonkar, Prasad ; Jalihal, Purnima ; Samad, Abdus</creator><creatorcontrib>George, Aravind ; Anandanarayanan, R. ; Suchithra, R. ; Pattnaik, B. ; Dudhgaonkar, Prasad ; Jalihal, Purnima ; Samad, Abdus</creatorcontrib><description>Summary A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, when reciprocating, generates the oscillatory airflow. At a very low wave height (piston stroke length, &lt;0.4 m), the turbine speed is very low. Time series analysis of pressure drop and speed are reported for higher stroke lengths, which shows the rate of increase and decrease in velocity of the turbine. Furthermore, the turbine pressure coefficient and the damping characteristics of the test rig chamber were estimated. Finally, the chamber damping verifies that the turbine‐chamber coupling effect is reciprocal.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.4230</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Air flow ; Coupling ; Cylinders ; Damping ; damping characteristics ; Energy conversion ; oscillating airflow ; Pneumatics ; Pressure ; Pressure drop ; Time series ; Turbine engines ; turbine pressure coefficient ; Turbines ; turbine‐chamber coupling ; Water column ; Wave energy ; wave energy conversion ; Wave height ; Wave power</subject><ispartof>International journal of energy research, 2018-12, Vol.42 (15), p.4770-4782</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3220-6eb2ebb351b435ac341361077e467a63803df999bd5db3582db4e80e655667a73</citedby><cites>FETCH-LOGICAL-c3220-6eb2ebb351b435ac341361077e467a63803df999bd5db3582db4e80e655667a73</cites><orcidid>0000-0002-0343-2234 ; 0000-0002-8877-4101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.4230$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.4230$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>George, Aravind</creatorcontrib><creatorcontrib>Anandanarayanan, R.</creatorcontrib><creatorcontrib>Suchithra, R.</creatorcontrib><creatorcontrib>Pattnaik, B.</creatorcontrib><creatorcontrib>Dudhgaonkar, Prasad</creatorcontrib><creatorcontrib>Jalihal, Purnima</creatorcontrib><creatorcontrib>Samad, Abdus</creatorcontrib><title>Experimental analysis of turbine‐chamber coupling for wave energy conversion</title><title>International journal of energy research</title><description>Summary A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, when reciprocating, generates the oscillatory airflow. At a very low wave height (piston stroke length, &lt;0.4 m), the turbine speed is very low. Time series analysis of pressure drop and speed are reported for higher stroke lengths, which shows the rate of increase and decrease in velocity of the turbine. Furthermore, the turbine pressure coefficient and the damping characteristics of the test rig chamber were estimated. Finally, the chamber damping verifies that the turbine‐chamber coupling effect is reciprocal.</description><subject>Air flow</subject><subject>Coupling</subject><subject>Cylinders</subject><subject>Damping</subject><subject>damping characteristics</subject><subject>Energy conversion</subject><subject>oscillating airflow</subject><subject>Pneumatics</subject><subject>Pressure</subject><subject>Pressure drop</subject><subject>Time series</subject><subject>Turbine engines</subject><subject>turbine pressure coefficient</subject><subject>Turbines</subject><subject>turbine‐chamber coupling</subject><subject>Water column</subject><subject>Wave energy</subject><subject>wave energy conversion</subject><subject>Wave height</subject><subject>Wave power</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10M9Kw0AQBvBFFKxVfIUFDx4kdXY32SRHKfUPFAVR6G3ZTSY1JU3ibtKam4_gM_okbq1XT3P4fgwzHyHnDCYMgF-jnYRcwAEZMUjTgLFwcUhGIKQIUogXx-TEuRWAz1g8Io-zjxZtuca60xXVta4GVzraFLTrrSlr_P78yt702qClWdO3VVkvadFYutUbpFijXQ4-qDdoXdnUp-So0JXDs785Jq-3s5fpfTB_unuY3syDTHAOgUTD0RgRMROKSGciZEIyiGMMZaylSEDkRZqmJo9yrxKemxATQBlF0oNYjMnFfm9rm_ceXadWTW_99U5xmUaQJExyry73KrONcxYL1fpXtR0UA7UrS6FVu7K8vNrLbVnh8B9Ts-df_QPKY2qv</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>George, Aravind</creator><creator>Anandanarayanan, R.</creator><creator>Suchithra, R.</creator><creator>Pattnaik, B.</creator><creator>Dudhgaonkar, Prasad</creator><creator>Jalihal, Purnima</creator><creator>Samad, Abdus</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0343-2234</orcidid><orcidid>https://orcid.org/0000-0002-8877-4101</orcidid></search><sort><creationdate>201812</creationdate><title>Experimental analysis of turbine‐chamber coupling for wave energy conversion</title><author>George, Aravind ; Anandanarayanan, R. ; Suchithra, R. ; Pattnaik, B. ; Dudhgaonkar, Prasad ; Jalihal, Purnima ; Samad, Abdus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3220-6eb2ebb351b435ac341361077e467a63803df999bd5db3582db4e80e655667a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air flow</topic><topic>Coupling</topic><topic>Cylinders</topic><topic>Damping</topic><topic>damping characteristics</topic><topic>Energy conversion</topic><topic>oscillating airflow</topic><topic>Pneumatics</topic><topic>Pressure</topic><topic>Pressure drop</topic><topic>Time series</topic><topic>Turbine engines</topic><topic>turbine pressure coefficient</topic><topic>Turbines</topic><topic>turbine‐chamber coupling</topic><topic>Water column</topic><topic>Wave energy</topic><topic>wave energy conversion</topic><topic>Wave height</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Aravind</creatorcontrib><creatorcontrib>Anandanarayanan, R.</creatorcontrib><creatorcontrib>Suchithra, R.</creatorcontrib><creatorcontrib>Pattnaik, B.</creatorcontrib><creatorcontrib>Dudhgaonkar, Prasad</creatorcontrib><creatorcontrib>Jalihal, Purnima</creatorcontrib><creatorcontrib>Samad, Abdus</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Aravind</au><au>Anandanarayanan, R.</au><au>Suchithra, R.</au><au>Pattnaik, B.</au><au>Dudhgaonkar, Prasad</au><au>Jalihal, Purnima</au><au>Samad, Abdus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental analysis of turbine‐chamber coupling for wave energy conversion</atitle><jtitle>International journal of energy research</jtitle><date>2018-12</date><risdate>2018</risdate><volume>42</volume><issue>15</issue><spage>4770</spage><epage>4782</epage><pages>4770-4782</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary A bidirectional axial‐flow impulse turbine installed in an oscillating water column raises the question of damping at different wave conditions. This article reports unsteady performances of such a turbine in an airflow test rig. The rig has a piston‐cylinder arrangement, and the piston, when reciprocating, generates the oscillatory airflow. At a very low wave height (piston stroke length, &lt;0.4 m), the turbine speed is very low. Time series analysis of pressure drop and speed are reported for higher stroke lengths, which shows the rate of increase and decrease in velocity of the turbine. Furthermore, the turbine pressure coefficient and the damping characteristics of the test rig chamber were estimated. Finally, the chamber damping verifies that the turbine‐chamber coupling effect is reciprocal.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.4230</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0343-2234</orcidid><orcidid>https://orcid.org/0000-0002-8877-4101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2018-12, Vol.42 (15), p.4770-4782
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2695088162
source Access via Wiley Online Library
subjects Air flow
Coupling
Cylinders
Damping
damping characteristics
Energy conversion
oscillating airflow
Pneumatics
Pressure
Pressure drop
Time series
Turbine engines
turbine pressure coefficient
Turbines
turbine‐chamber coupling
Water column
Wave energy
wave energy conversion
Wave height
Wave power
title Experimental analysis of turbine‐chamber coupling for wave energy conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20analysis%20of%20turbine%E2%80%90chamber%20coupling%20for%20wave%20energy%20conversion&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=George,%20Aravind&rft.date=2018-12&rft.volume=42&rft.issue=15&rft.spage=4770&rft.epage=4782&rft.pages=4770-4782&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.4230&rft_dat=%3Cproquest_cross%3E2695088162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695088162&rft_id=info:pmid/&rfr_iscdi=true