Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing

This paper proposes a simple, fabrication-friendly, extremely low loss photonic crystal fiber sensor in accordance with the surface plasmon resonance. Our proposed sensor has a di-material plasmonic layer of 20 nm Gold (Au) and 10 nm Titanium Dioxide (TiO 2 ). Variations of the sensor's optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2022-09, Vol.54 (9), Article 563
Hauptverfasser: Islam, Mohammad Rakibul, Khan, Md Moinul Islam, Al Naser, Ahmed Mujtaba, Mehjabin, Fariha, Jaba, Fatema Zerin, Chowdhury, Jubair Alam, Anzum, Fariha, Islam, Mohibul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Optical and quantum electronics
container_volume 54
creator Islam, Mohammad Rakibul
Khan, Md Moinul Islam
Al Naser, Ahmed Mujtaba
Mehjabin, Fariha
Jaba, Fatema Zerin
Chowdhury, Jubair Alam
Anzum, Fariha
Islam, Mohibul
description This paper proposes a simple, fabrication-friendly, extremely low loss photonic crystal fiber sensor in accordance with the surface plasmon resonance. Our proposed sensor has a di-material plasmonic layer of 20 nm Gold (Au) and 10 nm Titanium Dioxide (TiO 2 ). Variations of the sensor's optical parameters are detected through the Finite Element Method of COMSOL Multiphysics (v. 5.5). After optimizing all cross-sectional parameters, the sensor model has gained maximum Amplitude Sensitivity and Wavelength Sensitivity of 4646.1 RIU −1 and 10,000 nm/RIU with 2.15 × 10 –6 RIU and 1.00 × 10 –5 RIU sensor resolutions, respectively, within 1.33–1.42 RI range for analyte sensing. Besides, a shallow maximum confinement loss magnitude of 0.8125 dB/cm at 1.43 RI was observed, indicating the possibility of having excellent sensor length. Moreover, decent sensitivities were obtained in terms of strain, temperature, and magnetic field strength (MFS) sensing with the corresponding maximum values of 4.0 pm/µε (0.004 nm/µε), 1.00 nm/°C, and 160 pm/Oe (0.16 nm/Oe), respectively. Our proposed sensor shows remarkable performance in sensing any minute alterations in analyte RI, strain, temperature, and MFS, making it a unique and significant addition to the scientific, biomedical, and industrial fields.
doi_str_mv 10.1007/s11082-022-03912-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695010966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695010966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-184f5118bec21014895f256b75cf31327e2a7b7ffe1d40c69bbb0569ee4fb1873</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFr43ObD73KNWqIFj8AG_LJplNU9JNu5sc-u9NG8Gbh2FgeN6X4WHsGuEWAdI7jwiZCEAME0oUQXTCJhinIsgw_T5lEwghCTKJ8pxdeL8GgCSKYcL8A_m6srw1XPNdr0terLS11PCP5XuQa08lX84X3JP1reNmGG11s-9oxn3ndG1nvKPNlpzuejcctS35RleWurrgpqamPHBkq251LKltdcnOjG48Xf3uKftaPH7On4PXt6eX-f1rUIhIdgFmkYkRs5wKgYBRJmMj4iRP48KEGIqUhE7z1BjCMoIikXmeQ5xIosjkmKXhlN2MvVvX7nrynVq3vRu-90okMgYEmSQDJUaqcK33jozaunqj3V4hqINcNcpVg1x1lKuiIRSOIT_AtiL3V_1P6geNYnx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695010966</pqid></control><display><type>article</type><title>Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing</title><source>SpringerNature Journals</source><creator>Islam, Mohammad Rakibul ; Khan, Md Moinul Islam ; Al Naser, Ahmed Mujtaba ; Mehjabin, Fariha ; Jaba, Fatema Zerin ; Chowdhury, Jubair Alam ; Anzum, Fariha ; Islam, Mohibul</creator><creatorcontrib>Islam, Mohammad Rakibul ; Khan, Md Moinul Islam ; Al Naser, Ahmed Mujtaba ; Mehjabin, Fariha ; Jaba, Fatema Zerin ; Chowdhury, Jubair Alam ; Anzum, Fariha ; Islam, Mohibul</creatorcontrib><description>This paper proposes a simple, fabrication-friendly, extremely low loss photonic crystal fiber sensor in accordance with the surface plasmon resonance. Our proposed sensor has a di-material plasmonic layer of 20 nm Gold (Au) and 10 nm Titanium Dioxide (TiO 2 ). Variations of the sensor's optical parameters are detected through the Finite Element Method of COMSOL Multiphysics (v. 5.5). After optimizing all cross-sectional parameters, the sensor model has gained maximum Amplitude Sensitivity and Wavelength Sensitivity of 4646.1 RIU −1 and 10,000 nm/RIU with 2.15 × 10 –6 RIU and 1.00 × 10 –5 RIU sensor resolutions, respectively, within 1.33–1.42 RI range for analyte sensing. Besides, a shallow maximum confinement loss magnitude of 0.8125 dB/cm at 1.43 RI was observed, indicating the possibility of having excellent sensor length. Moreover, decent sensitivities were obtained in terms of strain, temperature, and magnetic field strength (MFS) sensing with the corresponding maximum values of 4.0 pm/µε (0.004 nm/µε), 1.00 nm/°C, and 160 pm/Oe (0.16 nm/Oe), respectively. Our proposed sensor shows remarkable performance in sensing any minute alterations in analyte RI, strain, temperature, and MFS, making it a unique and significant addition to the scientific, biomedical, and industrial fields.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-022-03912-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical materials ; Characterization and Evaluation of Materials ; Computer Communication Networks ; Crystal fibers ; Electrical Engineering ; Field strength ; Finite element method ; Lasers ; Magnetic fields ; Optical Devices ; Optics ; Parameter sensitivity ; Photonic crystals ; Photonics ; Physics ; Physics and Astronomy ; Sensitivity ; Sensors ; Strain analysis ; Titanium dioxide</subject><ispartof>Optical and quantum electronics, 2022-09, Vol.54 (9), Article 563</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-184f5118bec21014895f256b75cf31327e2a7b7ffe1d40c69bbb0569ee4fb1873</citedby><cites>FETCH-LOGICAL-c249t-184f5118bec21014895f256b75cf31327e2a7b7ffe1d40c69bbb0569ee4fb1873</cites><orcidid>0000-0002-5884-4949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-022-03912-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-022-03912-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Islam, Mohammad Rakibul</creatorcontrib><creatorcontrib>Khan, Md Moinul Islam</creatorcontrib><creatorcontrib>Al Naser, Ahmed Mujtaba</creatorcontrib><creatorcontrib>Mehjabin, Fariha</creatorcontrib><creatorcontrib>Jaba, Fatema Zerin</creatorcontrib><creatorcontrib>Chowdhury, Jubair Alam</creatorcontrib><creatorcontrib>Anzum, Fariha</creatorcontrib><creatorcontrib>Islam, Mohibul</creatorcontrib><title>Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>This paper proposes a simple, fabrication-friendly, extremely low loss photonic crystal fiber sensor in accordance with the surface plasmon resonance. Our proposed sensor has a di-material plasmonic layer of 20 nm Gold (Au) and 10 nm Titanium Dioxide (TiO 2 ). Variations of the sensor's optical parameters are detected through the Finite Element Method of COMSOL Multiphysics (v. 5.5). After optimizing all cross-sectional parameters, the sensor model has gained maximum Amplitude Sensitivity and Wavelength Sensitivity of 4646.1 RIU −1 and 10,000 nm/RIU with 2.15 × 10 –6 RIU and 1.00 × 10 –5 RIU sensor resolutions, respectively, within 1.33–1.42 RI range for analyte sensing. Besides, a shallow maximum confinement loss magnitude of 0.8125 dB/cm at 1.43 RI was observed, indicating the possibility of having excellent sensor length. Moreover, decent sensitivities were obtained in terms of strain, temperature, and magnetic field strength (MFS) sensing with the corresponding maximum values of 4.0 pm/µε (0.004 nm/µε), 1.00 nm/°C, and 160 pm/Oe (0.16 nm/Oe), respectively. Our proposed sensor shows remarkable performance in sensing any minute alterations in analyte RI, strain, temperature, and MFS, making it a unique and significant addition to the scientific, biomedical, and industrial fields.</description><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Crystal fibers</subject><subject>Electrical Engineering</subject><subject>Field strength</subject><subject>Finite element method</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Parameter sensitivity</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Strain analysis</subject><subject>Titanium dioxide</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFr43ObD73KNWqIFj8AG_LJplNU9JNu5sc-u9NG8Gbh2FgeN6X4WHsGuEWAdI7jwiZCEAME0oUQXTCJhinIsgw_T5lEwghCTKJ8pxdeL8GgCSKYcL8A_m6srw1XPNdr0terLS11PCP5XuQa08lX84X3JP1reNmGG11s-9oxn3ndG1nvKPNlpzuejcctS35RleWurrgpqamPHBkq251LKltdcnOjG48Xf3uKftaPH7On4PXt6eX-f1rUIhIdgFmkYkRs5wKgYBRJmMj4iRP48KEGIqUhE7z1BjCMoIikXmeQ5xIosjkmKXhlN2MvVvX7nrynVq3vRu-90okMgYEmSQDJUaqcK33jozaunqj3V4hqINcNcpVg1x1lKuiIRSOIT_AtiL3V_1P6geNYnx4</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Islam, Mohammad Rakibul</creator><creator>Khan, Md Moinul Islam</creator><creator>Al Naser, Ahmed Mujtaba</creator><creator>Mehjabin, Fariha</creator><creator>Jaba, Fatema Zerin</creator><creator>Chowdhury, Jubair Alam</creator><creator>Anzum, Fariha</creator><creator>Islam, Mohibul</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5884-4949</orcidid></search><sort><creationdate>20220901</creationdate><title>Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing</title><author>Islam, Mohammad Rakibul ; Khan, Md Moinul Islam ; Al Naser, Ahmed Mujtaba ; Mehjabin, Fariha ; Jaba, Fatema Zerin ; Chowdhury, Jubair Alam ; Anzum, Fariha ; Islam, Mohibul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-184f5118bec21014895f256b75cf31327e2a7b7ffe1d40c69bbb0569ee4fb1873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Crystal fibers</topic><topic>Electrical Engineering</topic><topic>Field strength</topic><topic>Finite element method</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Parameter sensitivity</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Strain analysis</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Mohammad Rakibul</creatorcontrib><creatorcontrib>Khan, Md Moinul Islam</creatorcontrib><creatorcontrib>Al Naser, Ahmed Mujtaba</creatorcontrib><creatorcontrib>Mehjabin, Fariha</creatorcontrib><creatorcontrib>Jaba, Fatema Zerin</creatorcontrib><creatorcontrib>Chowdhury, Jubair Alam</creatorcontrib><creatorcontrib>Anzum, Fariha</creatorcontrib><creatorcontrib>Islam, Mohibul</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Mohammad Rakibul</au><au>Khan, Md Moinul Islam</au><au>Al Naser, Ahmed Mujtaba</au><au>Mehjabin, Fariha</au><au>Jaba, Fatema Zerin</au><au>Chowdhury, Jubair Alam</au><au>Anzum, Fariha</au><au>Islam, Mohibul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>54</volume><issue>9</issue><artnum>563</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>This paper proposes a simple, fabrication-friendly, extremely low loss photonic crystal fiber sensor in accordance with the surface plasmon resonance. Our proposed sensor has a di-material plasmonic layer of 20 nm Gold (Au) and 10 nm Titanium Dioxide (TiO 2 ). Variations of the sensor's optical parameters are detected through the Finite Element Method of COMSOL Multiphysics (v. 5.5). After optimizing all cross-sectional parameters, the sensor model has gained maximum Amplitude Sensitivity and Wavelength Sensitivity of 4646.1 RIU −1 and 10,000 nm/RIU with 2.15 × 10 –6 RIU and 1.00 × 10 –5 RIU sensor resolutions, respectively, within 1.33–1.42 RI range for analyte sensing. Besides, a shallow maximum confinement loss magnitude of 0.8125 dB/cm at 1.43 RI was observed, indicating the possibility of having excellent sensor length. Moreover, decent sensitivities were obtained in terms of strain, temperature, and magnetic field strength (MFS) sensing with the corresponding maximum values of 4.0 pm/µε (0.004 nm/µε), 1.00 nm/°C, and 160 pm/Oe (0.16 nm/Oe), respectively. Our proposed sensor shows remarkable performance in sensing any minute alterations in analyte RI, strain, temperature, and MFS, making it a unique and significant addition to the scientific, biomedical, and industrial fields.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-022-03912-4</doi><orcidid>https://orcid.org/0000-0002-5884-4949</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2022-09, Vol.54 (9), Article 563
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2695010966
source SpringerNature Journals
subjects Biomedical materials
Characterization and Evaluation of Materials
Computer Communication Networks
Crystal fibers
Electrical Engineering
Field strength
Finite element method
Lasers
Magnetic fields
Optical Devices
Optics
Parameter sensitivity
Photonic crystals
Photonics
Physics
Physics and Astronomy
Sensitivity
Sensors
Strain analysis
Titanium dioxide
title Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20quad%20channel%20SPR-based%20PCF%20sensor%20for%20analyte,%20strain,%20temperature,%20and%20magnetic%20field%20strength%20sensing&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Islam,%20Mohammad%20Rakibul&rft.date=2022-09-01&rft.volume=54&rft.issue=9&rft.artnum=563&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-022-03912-4&rft_dat=%3Cproquest_cross%3E2695010966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695010966&rft_id=info:pmid/&rfr_iscdi=true