Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination

Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera Symbiodinium, Cladocopium, and Durusdinium . The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coral reefs 2022-08, Vol.41 (4), p.1097-1113
Hauptverfasser: Mani, Raagavi, Boo, Mel V., Ng, Siow Y., Chew, Shit F., Ip, Yuen K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1113
container_issue 4
container_start_page 1097
container_title Coral reefs
container_volume 41
creator Mani, Raagavi
Boo, Mel V.
Ng, Siow Y.
Chew, Shit F.
Ip, Yuen K.
description Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera Symbiodinium, Cladocopium, and Durusdinium . The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the host inorganic carbon (C i ) for photosynthesis and supply photosynthate to the host. The outer mantle has a host-derived carbon concentration mechanism (CCM) to facilitate the transport of C i from the hemolymph into the luminal fluid. To regulate C i uptake, the symbionts probably possess their own CCMs that comprise an extracellular alpha carbonic anhydrase ( αCA ) and a proton transporter. Indeed, we obtained from the outer mantle of the giant clam, Tridacna squamosa , three complete cDNA coding sequences of a membrane-associated αCA derived from Symbiodinium ( Symb-αCA ) , Cladocopium ( Clad-αCA ), and Durusdinium ( Duru-αCA ), which consisted of 2808, 2847, and 2829 bp, respectively. The respective encoded proteins had 935 (104.7 kDa), 948 (106.1 kDa), and 942 (105 kDa) amino acids, each containing a transmembrane domain. The outer mantle had the highest level of Duru-αCA transcripts. Phenogramic analyses denoted Duru-αCA as an extracellular CA closely associated with human CA4 and had a dinoflagellate-origin. Using an antibody that could react comprehensively with zooxanthellae-αCAs (Zoox-αCA) derived from all three genera of dinoflagellate, immunofluorescence microscopy revealed immuno-labeling at the dinoflagellate’s plasma membrane. As Symb-αCA, Clad-αCA, and Duru-αCA possessed extracellular catalytic domains, they could catalyze the dehydration of HCO 3 − to CO 2 in the luminal fluid. Importantly, illumination led to significant increases in the gene and protein expression levels of Zoox-αCA /Zoox-αCA in the outer mantle of T. squamosa . Taken together, Zoox-αCA could be part of the symbiont’s light-enhanced external CCM to promote and regulate the acquisition of C i from the host for photosynthesis. Our results also suggested that the potentials of generating CO 2 adjacent to the symbionts’ plasma membrane could differ among different phylotypes of Symbiodinium and Cladocopium .
doi_str_mv 10.1007/s00338-022-02278-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2694752184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694752184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c3743aab655a7860615ae8ceff7cb2d873e626a74faa95358832897adfca3d53</originalsourceid><addsrcrecordid>eNp9kcFu3CAURa2qkTpN-gNdPanbuMFgDF5WozapFGkWTdbWM-AZUhscwGonX9B1f677fEmYmUrddYHgiXvPBd2ieF-RjxUh4ioSwpgsCaWHJWT59KpYVTXLYyv462JFRL6qCZVvircxPhBCOG_ZqvjzbT_11ierQFvnhxG3ZhwxmQh-gLQzsLXoEqgRp0u4C1ajcgjxccHJR7wE83MOJkZAl48poMr2ZcQAOM47BIWh9y7T0e32OmA0gDF6ZXOEhh827Y4h84hxQpjM1Ad0BpKHOfjJJwM36w17_vUbtDkCkvUuwzSsNxSWOeF3A3oJ1m3B5uTJuqPkojgbcIzm3d_9vLj_8vlufVPebq6_rj_dlopVbSprxUTNEPuGcxSyIU3F0UhlhkGonmopmGlog6IeEFvOuJSMylagHhQyzdl58eHEzc99XExM3YNfgsuRHW3aWnBayTqr6Emlgo8xmKGbg50w7LuKdIcCu1OBXS6vOxbYPWUTO5nifPieCf_Q_3G9AOtipVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694752184</pqid></control><display><type>article</type><title>Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination</title><source>SpringerNature Journals</source><creator>Mani, Raagavi ; Boo, Mel V. ; Ng, Siow Y. ; Chew, Shit F. ; Ip, Yuen K.</creator><creatorcontrib>Mani, Raagavi ; Boo, Mel V. ; Ng, Siow Y. ; Chew, Shit F. ; Ip, Yuen K.</creatorcontrib><description>Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera Symbiodinium, Cladocopium, and Durusdinium . The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the host inorganic carbon (C i ) for photosynthesis and supply photosynthate to the host. The outer mantle has a host-derived carbon concentration mechanism (CCM) to facilitate the transport of C i from the hemolymph into the luminal fluid. To regulate C i uptake, the symbionts probably possess their own CCMs that comprise an extracellular alpha carbonic anhydrase ( αCA ) and a proton transporter. Indeed, we obtained from the outer mantle of the giant clam, Tridacna squamosa , three complete cDNA coding sequences of a membrane-associated αCA derived from Symbiodinium ( Symb-αCA ) , Cladocopium ( Clad-αCA ), and Durusdinium ( Duru-αCA ), which consisted of 2808, 2847, and 2829 bp, respectively. The respective encoded proteins had 935 (104.7 kDa), 948 (106.1 kDa), and 942 (105 kDa) amino acids, each containing a transmembrane domain. The outer mantle had the highest level of Duru-αCA transcripts. Phenogramic analyses denoted Duru-αCA as an extracellular CA closely associated with human CA4 and had a dinoflagellate-origin. Using an antibody that could react comprehensively with zooxanthellae-αCAs (Zoox-αCA) derived from all three genera of dinoflagellate, immunofluorescence microscopy revealed immuno-labeling at the dinoflagellate’s plasma membrane. As Symb-αCA, Clad-αCA, and Duru-αCA possessed extracellular catalytic domains, they could catalyze the dehydration of HCO 3 − to CO 2 in the luminal fluid. Importantly, illumination led to significant increases in the gene and protein expression levels of Zoox-αCA /Zoox-αCA in the outer mantle of T. squamosa . Taken together, Zoox-αCA could be part of the symbiont’s light-enhanced external CCM to promote and regulate the acquisition of C i from the host for photosynthesis. Our results also suggested that the potentials of generating CO 2 adjacent to the symbionts’ plasma membrane could differ among different phylotypes of Symbiodinium and Cladocopium .</description><identifier>ISSN: 0722-4028</identifier><identifier>EISSN: 1432-0975</identifier><identifier>DOI: 10.1007/s00338-022-02278-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Antibodies ; Biomedical and Life Sciences ; Carbon dioxide ; Carbonic anhydrase ; Carbonic anhydrases ; Cladocopium ; Clams ; Complementary DNA ; Dehydration ; Dinoflagellata ; Dinoflagellates ; Domains ; Freshwater &amp; Marine Ecology ; Gene expression ; Hemolymph ; Illumination ; Immunofluorescence ; Inorganic carbon ; Life Sciences ; Mantle ; Membranes ; Microorganisms ; Microscopy ; Oceanography ; Photosynthesis ; Proteins ; Symbiodinium ; Symbionts ; Tridacna squamosa ; Tubules ; Upper mantle ; Uptake ; Zooxanthellae</subject><ispartof>Coral reefs, 2022-08, Vol.41 (4), p.1097-1113</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4c3743aab655a7860615ae8ceff7cb2d873e626a74faa95358832897adfca3d53</citedby><cites>FETCH-LOGICAL-c319t-4c3743aab655a7860615ae8ceff7cb2d873e626a74faa95358832897adfca3d53</cites><orcidid>0000-0001-9124-7911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00338-022-02278-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00338-022-02278-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Mani, Raagavi</creatorcontrib><creatorcontrib>Boo, Mel V.</creatorcontrib><creatorcontrib>Ng, Siow Y.</creatorcontrib><creatorcontrib>Chew, Shit F.</creatorcontrib><creatorcontrib>Ip, Yuen K.</creatorcontrib><title>Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination</title><title>Coral reefs</title><addtitle>Coral Reefs</addtitle><description>Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera Symbiodinium, Cladocopium, and Durusdinium . The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the host inorganic carbon (C i ) for photosynthesis and supply photosynthate to the host. The outer mantle has a host-derived carbon concentration mechanism (CCM) to facilitate the transport of C i from the hemolymph into the luminal fluid. To regulate C i uptake, the symbionts probably possess their own CCMs that comprise an extracellular alpha carbonic anhydrase ( αCA ) and a proton transporter. Indeed, we obtained from the outer mantle of the giant clam, Tridacna squamosa , three complete cDNA coding sequences of a membrane-associated αCA derived from Symbiodinium ( Symb-αCA ) , Cladocopium ( Clad-αCA ), and Durusdinium ( Duru-αCA ), which consisted of 2808, 2847, and 2829 bp, respectively. The respective encoded proteins had 935 (104.7 kDa), 948 (106.1 kDa), and 942 (105 kDa) amino acids, each containing a transmembrane domain. The outer mantle had the highest level of Duru-αCA transcripts. Phenogramic analyses denoted Duru-αCA as an extracellular CA closely associated with human CA4 and had a dinoflagellate-origin. Using an antibody that could react comprehensively with zooxanthellae-αCAs (Zoox-αCA) derived from all three genera of dinoflagellate, immunofluorescence microscopy revealed immuno-labeling at the dinoflagellate’s plasma membrane. As Symb-αCA, Clad-αCA, and Duru-αCA possessed extracellular catalytic domains, they could catalyze the dehydration of HCO 3 − to CO 2 in the luminal fluid. Importantly, illumination led to significant increases in the gene and protein expression levels of Zoox-αCA /Zoox-αCA in the outer mantle of T. squamosa . Taken together, Zoox-αCA could be part of the symbiont’s light-enhanced external CCM to promote and regulate the acquisition of C i from the host for photosynthesis. Our results also suggested that the potentials of generating CO 2 adjacent to the symbionts’ plasma membrane could differ among different phylotypes of Symbiodinium and Cladocopium .</description><subject>Amino acids</subject><subject>Antibodies</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbonic anhydrase</subject><subject>Carbonic anhydrases</subject><subject>Cladocopium</subject><subject>Clams</subject><subject>Complementary DNA</subject><subject>Dehydration</subject><subject>Dinoflagellata</subject><subject>Dinoflagellates</subject><subject>Domains</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Gene expression</subject><subject>Hemolymph</subject><subject>Illumination</subject><subject>Immunofluorescence</subject><subject>Inorganic carbon</subject><subject>Life Sciences</subject><subject>Mantle</subject><subject>Membranes</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Oceanography</subject><subject>Photosynthesis</subject><subject>Proteins</subject><subject>Symbiodinium</subject><subject>Symbionts</subject><subject>Tridacna squamosa</subject><subject>Tubules</subject><subject>Upper mantle</subject><subject>Uptake</subject><subject>Zooxanthellae</subject><issn>0722-4028</issn><issn>1432-0975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu3CAURa2qkTpN-gNdPanbuMFgDF5WozapFGkWTdbWM-AZUhscwGonX9B1f677fEmYmUrddYHgiXvPBd2ieF-RjxUh4ioSwpgsCaWHJWT59KpYVTXLYyv462JFRL6qCZVvircxPhBCOG_ZqvjzbT_11ierQFvnhxG3ZhwxmQh-gLQzsLXoEqgRp0u4C1ajcgjxccHJR7wE83MOJkZAl48poMr2ZcQAOM47BIWh9y7T0e32OmA0gDF6ZXOEhh827Y4h84hxQpjM1Ad0BpKHOfjJJwM36w17_vUbtDkCkvUuwzSsNxSWOeF3A3oJ1m3B5uTJuqPkojgbcIzm3d_9vLj_8vlufVPebq6_rj_dlopVbSprxUTNEPuGcxSyIU3F0UhlhkGonmopmGlog6IeEFvOuJSMylagHhQyzdl58eHEzc99XExM3YNfgsuRHW3aWnBayTqr6Emlgo8xmKGbg50w7LuKdIcCu1OBXS6vOxbYPWUTO5nifPieCf_Q_3G9AOtipVY</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Mani, Raagavi</creator><creator>Boo, Mel V.</creator><creator>Ng, Siow Y.</creator><creator>Chew, Shit F.</creator><creator>Ip, Yuen K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9124-7911</orcidid></search><sort><creationdate>20220801</creationdate><title>Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination</title><author>Mani, Raagavi ; Boo, Mel V. ; Ng, Siow Y. ; Chew, Shit F. ; Ip, Yuen K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c3743aab655a7860615ae8ceff7cb2d873e626a74faa95358832897adfca3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Antibodies</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbonic anhydrase</topic><topic>Carbonic anhydrases</topic><topic>Cladocopium</topic><topic>Clams</topic><topic>Complementary DNA</topic><topic>Dehydration</topic><topic>Dinoflagellata</topic><topic>Dinoflagellates</topic><topic>Domains</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Gene expression</topic><topic>Hemolymph</topic><topic>Illumination</topic><topic>Immunofluorescence</topic><topic>Inorganic carbon</topic><topic>Life Sciences</topic><topic>Mantle</topic><topic>Membranes</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Oceanography</topic><topic>Photosynthesis</topic><topic>Proteins</topic><topic>Symbiodinium</topic><topic>Symbionts</topic><topic>Tridacna squamosa</topic><topic>Tubules</topic><topic>Upper mantle</topic><topic>Uptake</topic><topic>Zooxanthellae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mani, Raagavi</creatorcontrib><creatorcontrib>Boo, Mel V.</creatorcontrib><creatorcontrib>Ng, Siow Y.</creatorcontrib><creatorcontrib>Chew, Shit F.</creatorcontrib><creatorcontrib>Ip, Yuen K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Coral reefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mani, Raagavi</au><au>Boo, Mel V.</au><au>Ng, Siow Y.</au><au>Chew, Shit F.</au><au>Ip, Yuen K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination</atitle><jtitle>Coral reefs</jtitle><stitle>Coral Reefs</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>1097</spage><epage>1113</epage><pages>1097-1113</pages><issn>0722-4028</issn><eissn>1432-0975</eissn><abstract>Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera Symbiodinium, Cladocopium, and Durusdinium . The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the host inorganic carbon (C i ) for photosynthesis and supply photosynthate to the host. The outer mantle has a host-derived carbon concentration mechanism (CCM) to facilitate the transport of C i from the hemolymph into the luminal fluid. To regulate C i uptake, the symbionts probably possess their own CCMs that comprise an extracellular alpha carbonic anhydrase ( αCA ) and a proton transporter. Indeed, we obtained from the outer mantle of the giant clam, Tridacna squamosa , three complete cDNA coding sequences of a membrane-associated αCA derived from Symbiodinium ( Symb-αCA ) , Cladocopium ( Clad-αCA ), and Durusdinium ( Duru-αCA ), which consisted of 2808, 2847, and 2829 bp, respectively. The respective encoded proteins had 935 (104.7 kDa), 948 (106.1 kDa), and 942 (105 kDa) amino acids, each containing a transmembrane domain. The outer mantle had the highest level of Duru-αCA transcripts. Phenogramic analyses denoted Duru-αCA as an extracellular CA closely associated with human CA4 and had a dinoflagellate-origin. Using an antibody that could react comprehensively with zooxanthellae-αCAs (Zoox-αCA) derived from all three genera of dinoflagellate, immunofluorescence microscopy revealed immuno-labeling at the dinoflagellate’s plasma membrane. As Symb-αCA, Clad-αCA, and Duru-αCA possessed extracellular catalytic domains, they could catalyze the dehydration of HCO 3 − to CO 2 in the luminal fluid. Importantly, illumination led to significant increases in the gene and protein expression levels of Zoox-αCA /Zoox-αCA in the outer mantle of T. squamosa . Taken together, Zoox-αCA could be part of the symbiont’s light-enhanced external CCM to promote and regulate the acquisition of C i from the host for photosynthesis. Our results also suggested that the potentials of generating CO 2 adjacent to the symbionts’ plasma membrane could differ among different phylotypes of Symbiodinium and Cladocopium .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00338-022-02278-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9124-7911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0722-4028
ispartof Coral reefs, 2022-08, Vol.41 (4), p.1097-1113
issn 0722-4028
1432-0975
language eng
recordid cdi_proquest_journals_2694752184
source SpringerNature Journals
subjects Amino acids
Antibodies
Biomedical and Life Sciences
Carbon dioxide
Carbonic anhydrase
Carbonic anhydrases
Cladocopium
Clams
Complementary DNA
Dehydration
Dinoflagellata
Dinoflagellates
Domains
Freshwater & Marine Ecology
Gene expression
Hemolymph
Illumination
Immunofluorescence
Inorganic carbon
Life Sciences
Mantle
Membranes
Microorganisms
Microscopy
Oceanography
Photosynthesis
Proteins
Symbiodinium
Symbionts
Tridacna squamosa
Tubules
Upper mantle
Uptake
Zooxanthellae
title Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbiotic%20dinoflagellates%20of%20the%20giant%20clam,%20Tridacna%20squamosa,%20express%20an%20extracellular%20alpha%20carbonic%20anhydrase%20associated%20with%20the%20plasma%20membrane%20to%20promote%20HCO3%E2%88%92%20dehydration%20and%20CO2%20uptake%20during%20illumination&rft.jtitle=Coral%20reefs&rft.au=Mani,%20Raagavi&rft.date=2022-08-01&rft.volume=41&rft.issue=4&rft.spage=1097&rft.epage=1113&rft.pages=1097-1113&rft.issn=0722-4028&rft.eissn=1432-0975&rft_id=info:doi/10.1007/s00338-022-02278-z&rft_dat=%3Cproquest_cross%3E2694752184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694752184&rft_id=info:pmid/&rfr_iscdi=true