Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination
Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera Symbiodinium, Cladocopium, and Durusdinium . The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the h...
Gespeichert in:
Veröffentlicht in: | Coral reefs 2022-08, Vol.41 (4), p.1097-1113 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1113 |
---|---|
container_issue | 4 |
container_start_page | 1097 |
container_title | Coral reefs |
container_volume | 41 |
creator | Mani, Raagavi Boo, Mel V. Ng, Siow Y. Chew, Shit F. Ip, Yuen K. |
description | Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera
Symbiodinium, Cladocopium,
and
Durusdinium
. The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the host inorganic carbon (C
i
) for photosynthesis and supply photosynthate to the host. The outer mantle has a host-derived carbon concentration mechanism (CCM) to facilitate the transport of C
i
from the hemolymph into the luminal fluid. To regulate C
i
uptake, the symbionts probably possess their own CCMs that comprise an extracellular
alpha carbonic anhydrase
(
αCA
) and a proton transporter. Indeed, we obtained from the outer mantle of the giant clam,
Tridacna squamosa
, three complete cDNA coding sequences of a membrane-associated
αCA
derived from
Symbiodinium
(
Symb-αCA
)
, Cladocopium
(
Clad-αCA
), and
Durusdinium
(
Duru-αCA
), which consisted of 2808, 2847, and 2829 bp, respectively. The respective encoded proteins had 935 (104.7 kDa), 948 (106.1 kDa), and 942 (105 kDa) amino acids, each containing a transmembrane domain. The outer mantle had the highest level of
Duru-αCA
transcripts. Phenogramic analyses denoted Duru-αCA as an extracellular CA closely associated with human CA4 and had a dinoflagellate-origin. Using an antibody that could react comprehensively with zooxanthellae-αCAs (Zoox-αCA) derived from all three genera of dinoflagellate, immunofluorescence microscopy revealed immuno-labeling at the dinoflagellate’s plasma membrane. As Symb-αCA, Clad-αCA, and Duru-αCA possessed extracellular catalytic domains, they could catalyze the dehydration of HCO
3
−
to CO
2
in the luminal fluid. Importantly, illumination led to significant increases in the gene and protein expression levels of
Zoox-αCA
/Zoox-αCA in the outer mantle of
T. squamosa
. Taken together, Zoox-αCA could be part of the symbiont’s light-enhanced external CCM to promote and regulate the acquisition of C
i
from the host for photosynthesis. Our results also suggested that the potentials of generating CO
2
adjacent to the symbionts’ plasma membrane could differ among different phylotypes of
Symbiodinium
and
Cladocopium
. |
doi_str_mv | 10.1007/s00338-022-02278-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2694752184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694752184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c3743aab655a7860615ae8ceff7cb2d873e626a74faa95358832897adfca3d53</originalsourceid><addsrcrecordid>eNp9kcFu3CAURa2qkTpN-gNdPanbuMFgDF5WozapFGkWTdbWM-AZUhscwGonX9B1f677fEmYmUrddYHgiXvPBd2ieF-RjxUh4ioSwpgsCaWHJWT59KpYVTXLYyv462JFRL6qCZVvircxPhBCOG_ZqvjzbT_11ierQFvnhxG3ZhwxmQh-gLQzsLXoEqgRp0u4C1ajcgjxccHJR7wE83MOJkZAl48poMr2ZcQAOM47BIWh9y7T0e32OmA0gDF6ZXOEhh827Y4h84hxQpjM1Ad0BpKHOfjJJwM36w17_vUbtDkCkvUuwzSsNxSWOeF3A3oJ1m3B5uTJuqPkojgbcIzm3d_9vLj_8vlufVPebq6_rj_dlopVbSprxUTNEPuGcxSyIU3F0UhlhkGonmopmGlog6IeEFvOuJSMylagHhQyzdl58eHEzc99XExM3YNfgsuRHW3aWnBayTqr6Emlgo8xmKGbg50w7LuKdIcCu1OBXS6vOxbYPWUTO5nifPieCf_Q_3G9AOtipVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694752184</pqid></control><display><type>article</type><title>Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination</title><source>SpringerNature Journals</source><creator>Mani, Raagavi ; Boo, Mel V. ; Ng, Siow Y. ; Chew, Shit F. ; Ip, Yuen K.</creator><creatorcontrib>Mani, Raagavi ; Boo, Mel V. ; Ng, Siow Y. ; Chew, Shit F. ; Ip, Yuen K.</creatorcontrib><description>Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera
Symbiodinium, Cladocopium,
and
Durusdinium
. The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the host inorganic carbon (C
i
) for photosynthesis and supply photosynthate to the host. The outer mantle has a host-derived carbon concentration mechanism (CCM) to facilitate the transport of C
i
from the hemolymph into the luminal fluid. To regulate C
i
uptake, the symbionts probably possess their own CCMs that comprise an extracellular
alpha carbonic anhydrase
(
αCA
) and a proton transporter. Indeed, we obtained from the outer mantle of the giant clam,
Tridacna squamosa
, three complete cDNA coding sequences of a membrane-associated
αCA
derived from
Symbiodinium
(
Symb-αCA
)
, Cladocopium
(
Clad-αCA
), and
Durusdinium
(
Duru-αCA
), which consisted of 2808, 2847, and 2829 bp, respectively. The respective encoded proteins had 935 (104.7 kDa), 948 (106.1 kDa), and 942 (105 kDa) amino acids, each containing a transmembrane domain. The outer mantle had the highest level of
Duru-αCA
transcripts. Phenogramic analyses denoted Duru-αCA as an extracellular CA closely associated with human CA4 and had a dinoflagellate-origin. Using an antibody that could react comprehensively with zooxanthellae-αCAs (Zoox-αCA) derived from all three genera of dinoflagellate, immunofluorescence microscopy revealed immuno-labeling at the dinoflagellate’s plasma membrane. As Symb-αCA, Clad-αCA, and Duru-αCA possessed extracellular catalytic domains, they could catalyze the dehydration of HCO
3
−
to CO
2
in the luminal fluid. Importantly, illumination led to significant increases in the gene and protein expression levels of
Zoox-αCA
/Zoox-αCA in the outer mantle of
T. squamosa
. Taken together, Zoox-αCA could be part of the symbiont’s light-enhanced external CCM to promote and regulate the acquisition of C
i
from the host for photosynthesis. Our results also suggested that the potentials of generating CO
2
adjacent to the symbionts’ plasma membrane could differ among different phylotypes of
Symbiodinium
and
Cladocopium
.</description><identifier>ISSN: 0722-4028</identifier><identifier>EISSN: 1432-0975</identifier><identifier>DOI: 10.1007/s00338-022-02278-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Antibodies ; Biomedical and Life Sciences ; Carbon dioxide ; Carbonic anhydrase ; Carbonic anhydrases ; Cladocopium ; Clams ; Complementary DNA ; Dehydration ; Dinoflagellata ; Dinoflagellates ; Domains ; Freshwater & Marine Ecology ; Gene expression ; Hemolymph ; Illumination ; Immunofluorescence ; Inorganic carbon ; Life Sciences ; Mantle ; Membranes ; Microorganisms ; Microscopy ; Oceanography ; Photosynthesis ; Proteins ; Symbiodinium ; Symbionts ; Tridacna squamosa ; Tubules ; Upper mantle ; Uptake ; Zooxanthellae</subject><ispartof>Coral reefs, 2022-08, Vol.41 (4), p.1097-1113</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4c3743aab655a7860615ae8ceff7cb2d873e626a74faa95358832897adfca3d53</citedby><cites>FETCH-LOGICAL-c319t-4c3743aab655a7860615ae8ceff7cb2d873e626a74faa95358832897adfca3d53</cites><orcidid>0000-0001-9124-7911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00338-022-02278-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00338-022-02278-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Mani, Raagavi</creatorcontrib><creatorcontrib>Boo, Mel V.</creatorcontrib><creatorcontrib>Ng, Siow Y.</creatorcontrib><creatorcontrib>Chew, Shit F.</creatorcontrib><creatorcontrib>Ip, Yuen K.</creatorcontrib><title>Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination</title><title>Coral reefs</title><addtitle>Coral Reefs</addtitle><description>Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera
Symbiodinium, Cladocopium,
and
Durusdinium
. The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the host inorganic carbon (C
i
) for photosynthesis and supply photosynthate to the host. The outer mantle has a host-derived carbon concentration mechanism (CCM) to facilitate the transport of C
i
from the hemolymph into the luminal fluid. To regulate C
i
uptake, the symbionts probably possess their own CCMs that comprise an extracellular
alpha carbonic anhydrase
(
αCA
) and a proton transporter. Indeed, we obtained from the outer mantle of the giant clam,
Tridacna squamosa
, three complete cDNA coding sequences of a membrane-associated
αCA
derived from
Symbiodinium
(
Symb-αCA
)
, Cladocopium
(
Clad-αCA
), and
Durusdinium
(
Duru-αCA
), which consisted of 2808, 2847, and 2829 bp, respectively. The respective encoded proteins had 935 (104.7 kDa), 948 (106.1 kDa), and 942 (105 kDa) amino acids, each containing a transmembrane domain. The outer mantle had the highest level of
Duru-αCA
transcripts. Phenogramic analyses denoted Duru-αCA as an extracellular CA closely associated with human CA4 and had a dinoflagellate-origin. Using an antibody that could react comprehensively with zooxanthellae-αCAs (Zoox-αCA) derived from all three genera of dinoflagellate, immunofluorescence microscopy revealed immuno-labeling at the dinoflagellate’s plasma membrane. As Symb-αCA, Clad-αCA, and Duru-αCA possessed extracellular catalytic domains, they could catalyze the dehydration of HCO
3
−
to CO
2
in the luminal fluid. Importantly, illumination led to significant increases in the gene and protein expression levels of
Zoox-αCA
/Zoox-αCA in the outer mantle of
T. squamosa
. Taken together, Zoox-αCA could be part of the symbiont’s light-enhanced external CCM to promote and regulate the acquisition of C
i
from the host for photosynthesis. Our results also suggested that the potentials of generating CO
2
adjacent to the symbionts’ plasma membrane could differ among different phylotypes of
Symbiodinium
and
Cladocopium
.</description><subject>Amino acids</subject><subject>Antibodies</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbonic anhydrase</subject><subject>Carbonic anhydrases</subject><subject>Cladocopium</subject><subject>Clams</subject><subject>Complementary DNA</subject><subject>Dehydration</subject><subject>Dinoflagellata</subject><subject>Dinoflagellates</subject><subject>Domains</subject><subject>Freshwater & Marine Ecology</subject><subject>Gene expression</subject><subject>Hemolymph</subject><subject>Illumination</subject><subject>Immunofluorescence</subject><subject>Inorganic carbon</subject><subject>Life Sciences</subject><subject>Mantle</subject><subject>Membranes</subject><subject>Microorganisms</subject><subject>Microscopy</subject><subject>Oceanography</subject><subject>Photosynthesis</subject><subject>Proteins</subject><subject>Symbiodinium</subject><subject>Symbionts</subject><subject>Tridacna squamosa</subject><subject>Tubules</subject><subject>Upper mantle</subject><subject>Uptake</subject><subject>Zooxanthellae</subject><issn>0722-4028</issn><issn>1432-0975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu3CAURa2qkTpN-gNdPanbuMFgDF5WozapFGkWTdbWM-AZUhscwGonX9B1f677fEmYmUrddYHgiXvPBd2ieF-RjxUh4ioSwpgsCaWHJWT59KpYVTXLYyv462JFRL6qCZVvircxPhBCOG_ZqvjzbT_11ierQFvnhxG3ZhwxmQh-gLQzsLXoEqgRp0u4C1ajcgjxccHJR7wE83MOJkZAl48poMr2ZcQAOM47BIWh9y7T0e32OmA0gDF6ZXOEhh827Y4h84hxQpjM1Ad0BpKHOfjJJwM36w17_vUbtDkCkvUuwzSsNxSWOeF3A3oJ1m3B5uTJuqPkojgbcIzm3d_9vLj_8vlufVPebq6_rj_dlopVbSprxUTNEPuGcxSyIU3F0UhlhkGonmopmGlog6IeEFvOuJSMylagHhQyzdl58eHEzc99XExM3YNfgsuRHW3aWnBayTqr6Emlgo8xmKGbg50w7LuKdIcCu1OBXS6vOxbYPWUTO5nifPieCf_Q_3G9AOtipVY</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Mani, Raagavi</creator><creator>Boo, Mel V.</creator><creator>Ng, Siow Y.</creator><creator>Chew, Shit F.</creator><creator>Ip, Yuen K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9124-7911</orcidid></search><sort><creationdate>20220801</creationdate><title>Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination</title><author>Mani, Raagavi ; Boo, Mel V. ; Ng, Siow Y. ; Chew, Shit F. ; Ip, Yuen K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c3743aab655a7860615ae8ceff7cb2d873e626a74faa95358832897adfca3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Antibodies</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbonic anhydrase</topic><topic>Carbonic anhydrases</topic><topic>Cladocopium</topic><topic>Clams</topic><topic>Complementary DNA</topic><topic>Dehydration</topic><topic>Dinoflagellata</topic><topic>Dinoflagellates</topic><topic>Domains</topic><topic>Freshwater & Marine Ecology</topic><topic>Gene expression</topic><topic>Hemolymph</topic><topic>Illumination</topic><topic>Immunofluorescence</topic><topic>Inorganic carbon</topic><topic>Life Sciences</topic><topic>Mantle</topic><topic>Membranes</topic><topic>Microorganisms</topic><topic>Microscopy</topic><topic>Oceanography</topic><topic>Photosynthesis</topic><topic>Proteins</topic><topic>Symbiodinium</topic><topic>Symbionts</topic><topic>Tridacna squamosa</topic><topic>Tubules</topic><topic>Upper mantle</topic><topic>Uptake</topic><topic>Zooxanthellae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mani, Raagavi</creatorcontrib><creatorcontrib>Boo, Mel V.</creatorcontrib><creatorcontrib>Ng, Siow Y.</creatorcontrib><creatorcontrib>Chew, Shit F.</creatorcontrib><creatorcontrib>Ip, Yuen K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Coral reefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mani, Raagavi</au><au>Boo, Mel V.</au><au>Ng, Siow Y.</au><au>Chew, Shit F.</au><au>Ip, Yuen K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination</atitle><jtitle>Coral reefs</jtitle><stitle>Coral Reefs</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>1097</spage><epage>1113</epage><pages>1097-1113</pages><issn>0722-4028</issn><eissn>1432-0975</eissn><abstract>Giant clams generally harbor phototrophic Symbiodiniaceae dinoflagellates of genera
Symbiodinium, Cladocopium,
and
Durusdinium
. The coccoid symbiotic dinoflagellates (zooxanthellae) reside extracellularly inside the lumen of zooxanthellal tubules in the colorful outer mantle. They obtain from the host inorganic carbon (C
i
) for photosynthesis and supply photosynthate to the host. The outer mantle has a host-derived carbon concentration mechanism (CCM) to facilitate the transport of C
i
from the hemolymph into the luminal fluid. To regulate C
i
uptake, the symbionts probably possess their own CCMs that comprise an extracellular
alpha carbonic anhydrase
(
αCA
) and a proton transporter. Indeed, we obtained from the outer mantle of the giant clam,
Tridacna squamosa
, three complete cDNA coding sequences of a membrane-associated
αCA
derived from
Symbiodinium
(
Symb-αCA
)
, Cladocopium
(
Clad-αCA
), and
Durusdinium
(
Duru-αCA
), which consisted of 2808, 2847, and 2829 bp, respectively. The respective encoded proteins had 935 (104.7 kDa), 948 (106.1 kDa), and 942 (105 kDa) amino acids, each containing a transmembrane domain. The outer mantle had the highest level of
Duru-αCA
transcripts. Phenogramic analyses denoted Duru-αCA as an extracellular CA closely associated with human CA4 and had a dinoflagellate-origin. Using an antibody that could react comprehensively with zooxanthellae-αCAs (Zoox-αCA) derived from all three genera of dinoflagellate, immunofluorescence microscopy revealed immuno-labeling at the dinoflagellate’s plasma membrane. As Symb-αCA, Clad-αCA, and Duru-αCA possessed extracellular catalytic domains, they could catalyze the dehydration of HCO
3
−
to CO
2
in the luminal fluid. Importantly, illumination led to significant increases in the gene and protein expression levels of
Zoox-αCA
/Zoox-αCA in the outer mantle of
T. squamosa
. Taken together, Zoox-αCA could be part of the symbiont’s light-enhanced external CCM to promote and regulate the acquisition of C
i
from the host for photosynthesis. Our results also suggested that the potentials of generating CO
2
adjacent to the symbionts’ plasma membrane could differ among different phylotypes of
Symbiodinium
and
Cladocopium
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00338-022-02278-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9124-7911</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0722-4028 |
ispartof | Coral reefs, 2022-08, Vol.41 (4), p.1097-1113 |
issn | 0722-4028 1432-0975 |
language | eng |
recordid | cdi_proquest_journals_2694752184 |
source | SpringerNature Journals |
subjects | Amino acids Antibodies Biomedical and Life Sciences Carbon dioxide Carbonic anhydrase Carbonic anhydrases Cladocopium Clams Complementary DNA Dehydration Dinoflagellata Dinoflagellates Domains Freshwater & Marine Ecology Gene expression Hemolymph Illumination Immunofluorescence Inorganic carbon Life Sciences Mantle Membranes Microorganisms Microscopy Oceanography Photosynthesis Proteins Symbiodinium Symbionts Tridacna squamosa Tubules Upper mantle Uptake Zooxanthellae |
title | Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express an extracellular alpha carbonic anhydrase associated with the plasma membrane to promote HCO3− dehydration and CO2 uptake during illumination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbiotic%20dinoflagellates%20of%20the%20giant%20clam,%20Tridacna%20squamosa,%20express%20an%20extracellular%20alpha%20carbonic%20anhydrase%20associated%20with%20the%20plasma%20membrane%20to%20promote%20HCO3%E2%88%92%20dehydration%20and%20CO2%20uptake%20during%20illumination&rft.jtitle=Coral%20reefs&rft.au=Mani,%20Raagavi&rft.date=2022-08-01&rft.volume=41&rft.issue=4&rft.spage=1097&rft.epage=1113&rft.pages=1097-1113&rft.issn=0722-4028&rft.eissn=1432-0975&rft_id=info:doi/10.1007/s00338-022-02278-z&rft_dat=%3Cproquest_cross%3E2694752184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694752184&rft_id=info:pmid/&rfr_iscdi=true |