Empirical Bayes PCA in high dimensions
When the dimension of data is comparable to or larger than the number of data samples, principal components analysis (PCA) may exhibit problematic high‐dimensional noise. In this work, we propose an empirical Bayes PCA method that reduces this noise by estimating a joint prior distribution for the p...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2022-07, Vol.84 (3), p.853-878 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 878 |
---|---|
container_issue | 3 |
container_start_page | 853 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 84 |
creator | Zhong, Xinyi Su, Chang Fan, Zhou |
description | When the dimension of data is comparable to or larger than the number of data samples, principal components analysis (PCA) may exhibit problematic high‐dimensional noise. In this work, we propose an empirical Bayes PCA method that reduces this noise by estimating a joint prior distribution for the principal components. EB‐PCA is based on the classical Kiefer–Wolfowitz non‐parametric maximum likelihood estimator for empirical Bayes estimation, distributional results derived from random matrix theory for the sample PCs and iterative refinement using an approximate message passing (AMP) algorithm. In theoretical ‘spiked’ models, EB‐PCA achieves Bayes‐optimal estimation accuracy in the same settings as an oracle Bayes AMP procedure that knows the true priors. Empirically, EB‐PCA significantly improves over PCA when there is strong prior structure, both in simulation and on quantitative benchmarks constructed from the 1000 Genomes Project and the International HapMap Project. An illustration is presented for analysis of gene expression data obtained by single‐cell RNA‐seq. |
doi_str_mv | 10.1111/rssb.12490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2694717251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694717251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3700-f526ee203a63f5354ebf52dafd752eb82b87af5f5f7e98972db989a7011233423</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsXf8GC4EHYmu9sju1SbaGgWD2H7G5iU_bLxFL235u6nn3n8A7DMzPwAnCL4AxFPfoQihnCVMIzMEGUi1RmPDuPPeEyFRThS3AVwh5GcUEm4H7Z9M67UtfJQg8mJK_5PHFtsnOfu6RyjWmD69pwDS6sroO5-fMp-HhavuerdPPyvM7nm7QkAsLUMsyNwZBoTiwjjJoijiptK8GwKTJcZEJbFksYmUmBqyKaFhAhTAjFZAruxru9774OJnyrfXfwbXypMJdUIIEZitTDSJW-C8Ebq3rvGu0HhaA65aBOOajfHCKMRvjoajP8Q6q37XYx7vwAYYVdjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694717251</pqid></control><display><type>article</type><title>Empirical Bayes PCA in high dimensions</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Zhong, Xinyi ; Su, Chang ; Fan, Zhou</creator><creatorcontrib>Zhong, Xinyi ; Su, Chang ; Fan, Zhou</creatorcontrib><description>When the dimension of data is comparable to or larger than the number of data samples, principal components analysis (PCA) may exhibit problematic high‐dimensional noise. In this work, we propose an empirical Bayes PCA method that reduces this noise by estimating a joint prior distribution for the principal components. EB‐PCA is based on the classical Kiefer–Wolfowitz non‐parametric maximum likelihood estimator for empirical Bayes estimation, distributional results derived from random matrix theory for the sample PCs and iterative refinement using an approximate message passing (AMP) algorithm. In theoretical ‘spiked’ models, EB‐PCA achieves Bayes‐optimal estimation accuracy in the same settings as an oracle Bayes AMP procedure that knows the true priors. Empirically, EB‐PCA significantly improves over PCA when there is strong prior structure, both in simulation and on quantitative benchmarks constructed from the 1000 Genomes Project and the International HapMap Project. An illustration is presented for analysis of gene expression data obtained by single‐cell RNA‐seq.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12490</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; AMP algorithms ; Empirical analysis ; empirical Bayes ; Estimation ; Gene expression ; Genomes ; Genomics ; Iterative methods ; Matrix theory ; Maximum likelihood estimators ; Message passing ; Noise ; Principal components analysis ; random matrix theory ; Regression analysis ; Simulation ; Statistical methods ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-07, Vol.84 (3), p.853-878</ispartof><rights>2022 Royal Statistical Society</rights><rights>Copyright © 2022 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3700-f526ee203a63f5354ebf52dafd752eb82b87af5f5f7e98972db989a7011233423</citedby><cites>FETCH-LOGICAL-c3700-f526ee203a63f5354ebf52dafd752eb82b87af5f5f7e98972db989a7011233423</cites><orcidid>0000-0002-5940-4697 ; 0000-0002-8704-1512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssb.12490$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssb.12490$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhong, Xinyi</creatorcontrib><creatorcontrib>Su, Chang</creatorcontrib><creatorcontrib>Fan, Zhou</creatorcontrib><title>Empirical Bayes PCA in high dimensions</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>When the dimension of data is comparable to or larger than the number of data samples, principal components analysis (PCA) may exhibit problematic high‐dimensional noise. In this work, we propose an empirical Bayes PCA method that reduces this noise by estimating a joint prior distribution for the principal components. EB‐PCA is based on the classical Kiefer–Wolfowitz non‐parametric maximum likelihood estimator for empirical Bayes estimation, distributional results derived from random matrix theory for the sample PCs and iterative refinement using an approximate message passing (AMP) algorithm. In theoretical ‘spiked’ models, EB‐PCA achieves Bayes‐optimal estimation accuracy in the same settings as an oracle Bayes AMP procedure that knows the true priors. Empirically, EB‐PCA significantly improves over PCA when there is strong prior structure, both in simulation and on quantitative benchmarks constructed from the 1000 Genomes Project and the International HapMap Project. An illustration is presented for analysis of gene expression data obtained by single‐cell RNA‐seq.</description><subject>Algorithms</subject><subject>AMP algorithms</subject><subject>Empirical analysis</subject><subject>empirical Bayes</subject><subject>Estimation</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Iterative methods</subject><subject>Matrix theory</subject><subject>Maximum likelihood estimators</subject><subject>Message passing</subject><subject>Noise</subject><subject>Principal components analysis</subject><subject>random matrix theory</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsXf8GC4EHYmu9sju1SbaGgWD2H7G5iU_bLxFL235u6nn3n8A7DMzPwAnCL4AxFPfoQihnCVMIzMEGUi1RmPDuPPeEyFRThS3AVwh5GcUEm4H7Z9M67UtfJQg8mJK_5PHFtsnOfu6RyjWmD69pwDS6sroO5-fMp-HhavuerdPPyvM7nm7QkAsLUMsyNwZBoTiwjjJoijiptK8GwKTJcZEJbFksYmUmBqyKaFhAhTAjFZAruxru9774OJnyrfXfwbXypMJdUIIEZitTDSJW-C8Ebq3rvGu0HhaA65aBOOajfHCKMRvjoajP8Q6q37XYx7vwAYYVdjQ</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Zhong, Xinyi</creator><creator>Su, Chang</creator><creator>Fan, Zhou</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5940-4697</orcidid><orcidid>https://orcid.org/0000-0002-8704-1512</orcidid></search><sort><creationdate>202207</creationdate><title>Empirical Bayes PCA in high dimensions</title><author>Zhong, Xinyi ; Su, Chang ; Fan, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3700-f526ee203a63f5354ebf52dafd752eb82b87af5f5f7e98972db989a7011233423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>AMP algorithms</topic><topic>Empirical analysis</topic><topic>empirical Bayes</topic><topic>Estimation</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Iterative methods</topic><topic>Matrix theory</topic><topic>Maximum likelihood estimators</topic><topic>Message passing</topic><topic>Noise</topic><topic>Principal components analysis</topic><topic>random matrix theory</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Xinyi</creatorcontrib><creatorcontrib>Su, Chang</creatorcontrib><creatorcontrib>Fan, Zhou</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Xinyi</au><au>Su, Chang</au><au>Fan, Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Bayes PCA in high dimensions</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2022-07</date><risdate>2022</risdate><volume>84</volume><issue>3</issue><spage>853</spage><epage>878</epage><pages>853-878</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>When the dimension of data is comparable to or larger than the number of data samples, principal components analysis (PCA) may exhibit problematic high‐dimensional noise. In this work, we propose an empirical Bayes PCA method that reduces this noise by estimating a joint prior distribution for the principal components. EB‐PCA is based on the classical Kiefer–Wolfowitz non‐parametric maximum likelihood estimator for empirical Bayes estimation, distributional results derived from random matrix theory for the sample PCs and iterative refinement using an approximate message passing (AMP) algorithm. In theoretical ‘spiked’ models, EB‐PCA achieves Bayes‐optimal estimation accuracy in the same settings as an oracle Bayes AMP procedure that knows the true priors. Empirically, EB‐PCA significantly improves over PCA when there is strong prior structure, both in simulation and on quantitative benchmarks constructed from the 1000 Genomes Project and the International HapMap Project. An illustration is presented for analysis of gene expression data obtained by single‐cell RNA‐seq.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssb.12490</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-5940-4697</orcidid><orcidid>https://orcid.org/0000-0002-8704-1512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2022-07, Vol.84 (3), p.853-878 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_journals_2694717251 |
source | Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Algorithms AMP algorithms Empirical analysis empirical Bayes Estimation Gene expression Genomes Genomics Iterative methods Matrix theory Maximum likelihood estimators Message passing Noise Principal components analysis random matrix theory Regression analysis Simulation Statistical methods Statistics |
title | Empirical Bayes PCA in high dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Bayes%20PCA%20in%20high%20dimensions&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Zhong,%20Xinyi&rft.date=2022-07&rft.volume=84&rft.issue=3&rft.spage=853&rft.epage=878&rft.pages=853-878&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12490&rft_dat=%3Cproquest_cross%3E2694717251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694717251&rft_id=info:pmid/&rfr_iscdi=true |