Representational Ethical Model Calibration

Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Carruthers, Robert, Straw, Isabel, Ruffle, James K, Herron, Daniel, Nelson, Amy, Bzdok, Danilo, Fernandez-Reyes, Delmiro, Rees, Geraint, Nachev, Parashkev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Carruthers, Robert
Straw, Isabel
Ruffle, James K
Herron, Daniel
Nelson, Amy
Bzdok, Danilo
Fernandez-Reyes, Delmiro
Rees, Geraint
Nachev, Parashkev
description Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multi-dimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2694705157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694705157</sourcerecordid><originalsourceid>FETCH-proquest_journals_26947051573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCkotKEotTs0rSSzJzM9LzFFwLcnITAbSvvkpqTkKzok5mUlFYDkeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWgQ0ojjeyMzSxNzA1NDU3Jg4VQAz4zEe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694705157</pqid></control><display><type>article</type><title>Representational Ethical Model Calibration</title><source>Free E- Journals</source><creator>Carruthers, Robert ; Straw, Isabel ; Ruffle, James K ; Herron, Daniel ; Nelson, Amy ; Bzdok, Danilo ; Fernandez-Reyes, Delmiro ; Rees, Geraint ; Nachev, Parashkev</creator><creatorcontrib>Carruthers, Robert ; Straw, Isabel ; Ruffle, James K ; Herron, Daniel ; Nelson, Amy ; Bzdok, Danilo ; Fernandez-Reyes, Delmiro ; Rees, Geraint ; Nachev, Parashkev</creatorcontrib><description>Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multi-dimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Calibration ; Context ; Decision making ; Epistemology ; Equity ; Ethics ; Health care ; Machine learning ; Representations</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Carruthers, Robert</creatorcontrib><creatorcontrib>Straw, Isabel</creatorcontrib><creatorcontrib>Ruffle, James K</creatorcontrib><creatorcontrib>Herron, Daniel</creatorcontrib><creatorcontrib>Nelson, Amy</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><creatorcontrib>Fernandez-Reyes, Delmiro</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><title>Representational Ethical Model Calibration</title><title>arXiv.org</title><description>Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multi-dimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Context</subject><subject>Decision making</subject><subject>Epistemology</subject><subject>Equity</subject><subject>Ethics</subject><subject>Health care</subject><subject>Machine learning</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCkotKEotTs0rSSzJzM9LzFFwLcnITAbSvvkpqTkKzok5mUlFYDkeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWgQ0ojjeyMzSxNzA1NDU3Jg4VQAz4zEe</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Carruthers, Robert</creator><creator>Straw, Isabel</creator><creator>Ruffle, James K</creator><creator>Herron, Daniel</creator><creator>Nelson, Amy</creator><creator>Bzdok, Danilo</creator><creator>Fernandez-Reyes, Delmiro</creator><creator>Rees, Geraint</creator><creator>Nachev, Parashkev</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221018</creationdate><title>Representational Ethical Model Calibration</title><author>Carruthers, Robert ; Straw, Isabel ; Ruffle, James K ; Herron, Daniel ; Nelson, Amy ; Bzdok, Danilo ; Fernandez-Reyes, Delmiro ; Rees, Geraint ; Nachev, Parashkev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26947051573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Context</topic><topic>Decision making</topic><topic>Epistemology</topic><topic>Equity</topic><topic>Ethics</topic><topic>Health care</topic><topic>Machine learning</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Carruthers, Robert</creatorcontrib><creatorcontrib>Straw, Isabel</creatorcontrib><creatorcontrib>Ruffle, James K</creatorcontrib><creatorcontrib>Herron, Daniel</creatorcontrib><creatorcontrib>Nelson, Amy</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><creatorcontrib>Fernandez-Reyes, Delmiro</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carruthers, Robert</au><au>Straw, Isabel</au><au>Ruffle, James K</au><au>Herron, Daniel</au><au>Nelson, Amy</au><au>Bzdok, Danilo</au><au>Fernandez-Reyes, Delmiro</au><au>Rees, Geraint</au><au>Nachev, Parashkev</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Representational Ethical Model Calibration</atitle><jtitle>arXiv.org</jtitle><date>2022-10-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multi-dimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2694705157
source Free E- Journals
subjects Accuracy
Calibration
Context
Decision making
Epistemology
Equity
Ethics
Health care
Machine learning
Representations
title Representational Ethical Model Calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Representational%20Ethical%20Model%20Calibration&rft.jtitle=arXiv.org&rft.au=Carruthers,%20Robert&rft.date=2022-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2694705157%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694705157&rft_id=info:pmid/&rfr_iscdi=true