Representational Ethical Model Calibration
Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the ind...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Carruthers, Robert Straw, Isabel Ruffle, James K Herron, Daniel Nelson, Amy Bzdok, Danilo Fernandez-Reyes, Delmiro Rees, Geraint Nachev, Parashkev |
description | Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multi-dimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2694705157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694705157</sourcerecordid><originalsourceid>FETCH-proquest_journals_26947051573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCkotKEotTs0rSSzJzM9LzFFwLcnITAbSvvkpqTkKzok5mUlFYDkeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWgQ0ojjeyMzSxNzA1NDU3Jg4VQAz4zEe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694705157</pqid></control><display><type>article</type><title>Representational Ethical Model Calibration</title><source>Free E- Journals</source><creator>Carruthers, Robert ; Straw, Isabel ; Ruffle, James K ; Herron, Daniel ; Nelson, Amy ; Bzdok, Danilo ; Fernandez-Reyes, Delmiro ; Rees, Geraint ; Nachev, Parashkev</creator><creatorcontrib>Carruthers, Robert ; Straw, Isabel ; Ruffle, James K ; Herron, Daniel ; Nelson, Amy ; Bzdok, Danilo ; Fernandez-Reyes, Delmiro ; Rees, Geraint ; Nachev, Parashkev</creatorcontrib><description>Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multi-dimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Calibration ; Context ; Decision making ; Epistemology ; Equity ; Ethics ; Health care ; Machine learning ; Representations</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Carruthers, Robert</creatorcontrib><creatorcontrib>Straw, Isabel</creatorcontrib><creatorcontrib>Ruffle, James K</creatorcontrib><creatorcontrib>Herron, Daniel</creatorcontrib><creatorcontrib>Nelson, Amy</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><creatorcontrib>Fernandez-Reyes, Delmiro</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><title>Representational Ethical Model Calibration</title><title>arXiv.org</title><description>Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multi-dimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Context</subject><subject>Decision making</subject><subject>Epistemology</subject><subject>Equity</subject><subject>Ethics</subject><subject>Health care</subject><subject>Machine learning</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCkotKEotTs0rSSzJzM9LzFFwLcnITAbSvvkpqTkKzok5mUlFYDkeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWgQ0ojjeyMzSxNzA1NDU3Jg4VQAz4zEe</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Carruthers, Robert</creator><creator>Straw, Isabel</creator><creator>Ruffle, James K</creator><creator>Herron, Daniel</creator><creator>Nelson, Amy</creator><creator>Bzdok, Danilo</creator><creator>Fernandez-Reyes, Delmiro</creator><creator>Rees, Geraint</creator><creator>Nachev, Parashkev</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221018</creationdate><title>Representational Ethical Model Calibration</title><author>Carruthers, Robert ; Straw, Isabel ; Ruffle, James K ; Herron, Daniel ; Nelson, Amy ; Bzdok, Danilo ; Fernandez-Reyes, Delmiro ; Rees, Geraint ; Nachev, Parashkev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26947051573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Context</topic><topic>Decision making</topic><topic>Epistemology</topic><topic>Equity</topic><topic>Ethics</topic><topic>Health care</topic><topic>Machine learning</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Carruthers, Robert</creatorcontrib><creatorcontrib>Straw, Isabel</creatorcontrib><creatorcontrib>Ruffle, James K</creatorcontrib><creatorcontrib>Herron, Daniel</creatorcontrib><creatorcontrib>Nelson, Amy</creatorcontrib><creatorcontrib>Bzdok, Danilo</creatorcontrib><creatorcontrib>Fernandez-Reyes, Delmiro</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Nachev, Parashkev</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carruthers, Robert</au><au>Straw, Isabel</au><au>Ruffle, James K</au><au>Herron, Daniel</au><au>Nelson, Amy</au><au>Bzdok, Danilo</au><au>Fernandez-Reyes, Delmiro</au><au>Rees, Geraint</au><au>Nachev, Parashkev</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Representational Ethical Model Calibration</atitle><jtitle>arXiv.org</jtitle><date>2022-10-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Equity is widely held to be fundamental to the ethics of healthcare. In the context of clinical decision-making, it rests on the comparative fidelity of the intelligence -- evidence-based or intuitive -- guiding the management of each individual patient. Though brought to recent attention by the individuating power of contemporary machine learning, such epistemic equity arises in the context of any decision guidance, whether traditional or innovative. Yet no general framework for its quantification, let alone assurance, currently exists. Here we formulate epistemic equity in terms of model fidelity evaluated over learnt multi-dimensional representations of identity crafted to maximise the captured diversity of the population, introducing a comprehensive framework for Representational Ethical Model Calibration. We demonstrate use of the framework on large-scale multimodal data from UK Biobank to derive diverse representations of the population, quantify model performance, and institute responsive remediation. We offer our approach as a principled solution to quantifying and assuring epistemic equity in healthcare, with applications across the research, clinical, and regulatory domains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2694705157 |
source | Free E- Journals |
subjects | Accuracy Calibration Context Decision making Epistemology Equity Ethics Health care Machine learning Representations |
title | Representational Ethical Model Calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Representational%20Ethical%20Model%20Calibration&rft.jtitle=arXiv.org&rft.au=Carruthers,%20Robert&rft.date=2022-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2694705157%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694705157&rft_id=info:pmid/&rfr_iscdi=true |