Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter
The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ezekiel Olayiwola Arogunjo Nnadi, Olivia Ojo, Joseph Olorunfemi |
description | The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the power flow and Zero Voltage Switching (ZVS) analyses of Quad-active-bridge (QAB) dc-dc converter. The dynamic as well as the steady state analyses of the converter were carried out, thereby determining the phase shifts required to meet commanded load powers. The full equivalent circuit model of the converter which include winding resistances and magnetizing inductances is used rather than the popular lossless star-equivalent circuit model that may introduce significant error in the converter's analysis. The conditions which ensure the converter working in ZVS mode are determined and experimentally verified. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2694704962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694704962</sourcerecordid><originalsourceid>FETCH-proquest_journals_26947049623</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQIMgWLT_cME5UNOXHfuwdFQUhy7l0qTSUhNN-sC_t4Mf4HSWc86KWMx1D_ToMbYhtjGd4zgsCJnvuxYpC9RPJduaJtijrAUkaASHs5qFhrxXM6DkUN6vEEvsP6Y1oBpAuIzIaVwP7bQkuuUPAVlKsxRSJSehB6F3ZN1gb4T945bs89MtLehLq_cozFB1atTL1FQsiLzQ8aKAuf9ZX_EiQE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694704962</pqid></control><display><type>article</type><title>Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter</title><source>Free E- Journals</source><creator>Ezekiel Olayiwola Arogunjo ; Nnadi, Olivia ; Ojo, Joseph Olorunfemi</creator><creatorcontrib>Ezekiel Olayiwola Arogunjo ; Nnadi, Olivia ; Ojo, Joseph Olorunfemi</creatorcontrib><description>The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the power flow and Zero Voltage Switching (ZVS) analyses of Quad-active-bridge (QAB) dc-dc converter. The dynamic as well as the steady state analyses of the converter were carried out, thereby determining the phase shifts required to meet commanded load powers. The full equivalent circuit model of the converter which include winding resistances and magnetizing inductances is used rather than the popular lossless star-equivalent circuit model that may introduce significant error in the converter's analysis. The conditions which ensure the converter working in ZVS mode are determined and experimentally verified.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Active control ; Electric converters ; Electric potential ; Equivalent circuits ; Error analysis ; Flow control ; Power flow ; Steady state ; Switching ; Voltage ; Voltage converters (DC to DC)</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ezekiel Olayiwola Arogunjo</creatorcontrib><creatorcontrib>Nnadi, Olivia</creatorcontrib><creatorcontrib>Ojo, Joseph Olorunfemi</creatorcontrib><title>Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter</title><title>arXiv.org</title><description>The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the power flow and Zero Voltage Switching (ZVS) analyses of Quad-active-bridge (QAB) dc-dc converter. The dynamic as well as the steady state analyses of the converter were carried out, thereby determining the phase shifts required to meet commanded load powers. The full equivalent circuit model of the converter which include winding resistances and magnetizing inductances is used rather than the popular lossless star-equivalent circuit model that may introduce significant error in the converter's analysis. The conditions which ensure the converter working in ZVS mode are determined and experimentally verified.</description><subject>Active control</subject><subject>Electric converters</subject><subject>Electric potential</subject><subject>Equivalent circuits</subject><subject>Error analysis</subject><subject>Flow control</subject><subject>Power flow</subject><subject>Steady state</subject><subject>Switching</subject><subject>Voltage</subject><subject>Voltage converters (DC to DC)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjLsKwjAUQIMgWLT_cME5UNOXHfuwdFQUhy7l0qTSUhNN-sC_t4Mf4HSWc86KWMx1D_ToMbYhtjGd4zgsCJnvuxYpC9RPJduaJtijrAUkaASHs5qFhrxXM6DkUN6vEEvsP6Y1oBpAuIzIaVwP7bQkuuUPAVlKsxRSJSehB6F3ZN1gb4T945bs89MtLehLq_cozFB1atTL1FQsiLzQ8aKAuf9ZX_EiQE0</recordid><startdate>20220724</startdate><enddate>20220724</enddate><creator>Ezekiel Olayiwola Arogunjo</creator><creator>Nnadi, Olivia</creator><creator>Ojo, Joseph Olorunfemi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220724</creationdate><title>Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter</title><author>Ezekiel Olayiwola Arogunjo ; Nnadi, Olivia ; Ojo, Joseph Olorunfemi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26947049623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Electric converters</topic><topic>Electric potential</topic><topic>Equivalent circuits</topic><topic>Error analysis</topic><topic>Flow control</topic><topic>Power flow</topic><topic>Steady state</topic><topic>Switching</topic><topic>Voltage</topic><topic>Voltage converters (DC to DC)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ezekiel Olayiwola Arogunjo</creatorcontrib><creatorcontrib>Nnadi, Olivia</creatorcontrib><creatorcontrib>Ojo, Joseph Olorunfemi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezekiel Olayiwola Arogunjo</au><au>Nnadi, Olivia</au><au>Ojo, Joseph Olorunfemi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter</atitle><jtitle>arXiv.org</jtitle><date>2022-07-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the power flow and Zero Voltage Switching (ZVS) analyses of Quad-active-bridge (QAB) dc-dc converter. The dynamic as well as the steady state analyses of the converter were carried out, thereby determining the phase shifts required to meet commanded load powers. The full equivalent circuit model of the converter which include winding resistances and magnetizing inductances is used rather than the popular lossless star-equivalent circuit model that may introduce significant error in the converter's analysis. The conditions which ensure the converter working in ZVS mode are determined and experimentally verified.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2694704962 |
source | Free E- Journals |
subjects | Active control Electric converters Electric potential Equivalent circuits Error analysis Flow control Power flow Steady state Switching Voltage Voltage converters (DC to DC) |
title | Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Harmonic-Balance%20Based%20Power%20Flow%20and%20ZVS%20Analysis%20of%20a%20Quad-Active%20Bridge%20DC-DC%20Converter&rft.jtitle=arXiv.org&rft.au=Ezekiel%20Olayiwola%20Arogunjo&rft.date=2022-07-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2694704962%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694704962&rft_id=info:pmid/&rfr_iscdi=true |