Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter

The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Ezekiel Olayiwola Arogunjo, Nnadi, Olivia, Ojo, Joseph Olorunfemi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ezekiel Olayiwola Arogunjo
Nnadi, Olivia
Ojo, Joseph Olorunfemi
description The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the power flow and Zero Voltage Switching (ZVS) analyses of Quad-active-bridge (QAB) dc-dc converter. The dynamic as well as the steady state analyses of the converter were carried out, thereby determining the phase shifts required to meet commanded load powers. The full equivalent circuit model of the converter which include winding resistances and magnetizing inductances is used rather than the popular lossless star-equivalent circuit model that may introduce significant error in the converter's analysis. The conditions which ensure the converter working in ZVS mode are determined and experimentally verified.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2694704962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694704962</sourcerecordid><originalsourceid>FETCH-proquest_journals_26947049623</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQIMgWLT_cME5UNOXHfuwdFQUhy7l0qTSUhNN-sC_t4Mf4HSWc86KWMx1D_ToMbYhtjGd4zgsCJnvuxYpC9RPJduaJtijrAUkaASHs5qFhrxXM6DkUN6vEEvsP6Y1oBpAuIzIaVwP7bQkuuUPAVlKsxRSJSehB6F3ZN1gb4T945bs89MtLehLq_cozFB1atTL1FQsiLzQ8aKAuf9ZX_EiQE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694704962</pqid></control><display><type>article</type><title>Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter</title><source>Free E- Journals</source><creator>Ezekiel Olayiwola Arogunjo ; Nnadi, Olivia ; Ojo, Joseph Olorunfemi</creator><creatorcontrib>Ezekiel Olayiwola Arogunjo ; Nnadi, Olivia ; Ojo, Joseph Olorunfemi</creatorcontrib><description>The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the power flow and Zero Voltage Switching (ZVS) analyses of Quad-active-bridge (QAB) dc-dc converter. The dynamic as well as the steady state analyses of the converter were carried out, thereby determining the phase shifts required to meet commanded load powers. The full equivalent circuit model of the converter which include winding resistances and magnetizing inductances is used rather than the popular lossless star-equivalent circuit model that may introduce significant error in the converter's analysis. The conditions which ensure the converter working in ZVS mode are determined and experimentally verified.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Active control ; Electric converters ; Electric potential ; Equivalent circuits ; Error analysis ; Flow control ; Power flow ; Steady state ; Switching ; Voltage ; Voltage converters (DC to DC)</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ezekiel Olayiwola Arogunjo</creatorcontrib><creatorcontrib>Nnadi, Olivia</creatorcontrib><creatorcontrib>Ojo, Joseph Olorunfemi</creatorcontrib><title>Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter</title><title>arXiv.org</title><description>The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the power flow and Zero Voltage Switching (ZVS) analyses of Quad-active-bridge (QAB) dc-dc converter. The dynamic as well as the steady state analyses of the converter were carried out, thereby determining the phase shifts required to meet commanded load powers. The full equivalent circuit model of the converter which include winding resistances and magnetizing inductances is used rather than the popular lossless star-equivalent circuit model that may introduce significant error in the converter's analysis. The conditions which ensure the converter working in ZVS mode are determined and experimentally verified.</description><subject>Active control</subject><subject>Electric converters</subject><subject>Electric potential</subject><subject>Equivalent circuits</subject><subject>Error analysis</subject><subject>Flow control</subject><subject>Power flow</subject><subject>Steady state</subject><subject>Switching</subject><subject>Voltage</subject><subject>Voltage converters (DC to DC)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjLsKwjAUQIMgWLT_cME5UNOXHfuwdFQUhy7l0qTSUhNN-sC_t4Mf4HSWc86KWMx1D_ToMbYhtjGd4zgsCJnvuxYpC9RPJduaJtijrAUkaASHs5qFhrxXM6DkUN6vEEvsP6Y1oBpAuIzIaVwP7bQkuuUPAVlKsxRSJSehB6F3ZN1gb4T945bs89MtLehLq_cozFB1atTL1FQsiLzQ8aKAuf9ZX_EiQE0</recordid><startdate>20220724</startdate><enddate>20220724</enddate><creator>Ezekiel Olayiwola Arogunjo</creator><creator>Nnadi, Olivia</creator><creator>Ojo, Joseph Olorunfemi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220724</creationdate><title>Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter</title><author>Ezekiel Olayiwola Arogunjo ; Nnadi, Olivia ; Ojo, Joseph Olorunfemi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26947049623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Electric converters</topic><topic>Electric potential</topic><topic>Equivalent circuits</topic><topic>Error analysis</topic><topic>Flow control</topic><topic>Power flow</topic><topic>Steady state</topic><topic>Switching</topic><topic>Voltage</topic><topic>Voltage converters (DC to DC)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ezekiel Olayiwola Arogunjo</creatorcontrib><creatorcontrib>Nnadi, Olivia</creatorcontrib><creatorcontrib>Ojo, Joseph Olorunfemi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezekiel Olayiwola Arogunjo</au><au>Nnadi, Olivia</au><au>Ojo, Joseph Olorunfemi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter</atitle><jtitle>arXiv.org</jtitle><date>2022-07-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The power flow control of multi-active bridge converters requires a comprehensive steady-state analysis of the converter and the determination of conditions for zero voltage switching of all switching in the converter which result in minimum switching loss. This paper aims to model and carry out the power flow and Zero Voltage Switching (ZVS) analyses of Quad-active-bridge (QAB) dc-dc converter. The dynamic as well as the steady state analyses of the converter were carried out, thereby determining the phase shifts required to meet commanded load powers. The full equivalent circuit model of the converter which include winding resistances and magnetizing inductances is used rather than the popular lossless star-equivalent circuit model that may introduce significant error in the converter's analysis. The conditions which ensure the converter working in ZVS mode are determined and experimentally verified.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2694704962
source Free E- Journals
subjects Active control
Electric converters
Electric potential
Equivalent circuits
Error analysis
Flow control
Power flow
Steady state
Switching
Voltage
Voltage converters (DC to DC)
title Harmonic-Balance Based Power Flow and ZVS Analysis of a Quad-Active Bridge DC-DC Converter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Harmonic-Balance%20Based%20Power%20Flow%20and%20ZVS%20Analysis%20of%20a%20Quad-Active%20Bridge%20DC-DC%20Converter&rft.jtitle=arXiv.org&rft.au=Ezekiel%20Olayiwola%20Arogunjo&rft.date=2022-07-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2694704962%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694704962&rft_id=info:pmid/&rfr_iscdi=true