Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics
The tuning of stochastic gradient algorithms (SGAs) for optimization and sampling is often based on heuristics and trial-and-error rather than generalizable theory. We address this theory--practice gap by characterizing the large-sample statistical asymptotics of SGAs via a joint step-size--sample-s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tuning of stochastic gradient algorithms (SGAs) for optimization and sampling is often based on heuristics and trial-and-error rather than generalizable theory. We address this theory--practice gap by characterizing the large-sample statistical asymptotics of SGAs via a joint step-size--sample-size scaling limit. We show that iterate averaging with a large fixed step size is robust to the choice of tuning parameters and asymptotically has covariance proportional to that of the MLE sampling distribution. We also prove a Bernstein--von Mises-like theorem to guide tuning, including for generalized posteriors that are robust to model misspecification. Numerical experiments validate our results and recommendations in realistic finite-sample regimes. Our work lays the foundation for a systematic analysis of other stochastic gradient Markov chain Monte Carlo algorithms for a wide range of models. |
---|---|
ISSN: | 2331-8422 |