Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach
To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an esse...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-07, Vol.14 (14), p.8921 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 8921 |
container_title | Sustainability |
container_volume | 14 |
creator | Arif, Shaila Rabbi, Ata E Ahmed, Shams Uddin Hossain Lipu, Molla Shahadat Jamal, Taskin Aziz, Tareq Sarker, Mahidur R. Riaz, Amna Alharbi, Talal Hussain, Muhammad Majid |
description | To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an essential role in designing and planning such microgrids. PV hosting capacity assessment determines the maximum PV capacity suitable for the grid and the appropriate electrical location for PV placement. This research reveals that conventional static criteria to assess the PV hosting capacity fail to ensure the grid’s operational robustness. It hence demands a reduction in the theoretical hosting capacity estimation to ensure grid compatible post-fault voltage and frequency recovery. Energy storage technologies, particularly fast-responsive batteries, can potentially prevent such undesirable scenarios; nevertheless, careful integration is required to ensure an affordable cost of energy. This study proposes a novel methodical techno-economic approach for an off-grid remote industrial microgrid to enhance the PV hosting capacity by integrating battery energy storage considering grid disturbance and recovery scenarios. The method has been validated in an industrial microgrid with a 2.6 MW peak demand in a ready-made garment (RMG) factory having a distinctive demand pattern and unique constraints in remote Bangladesh. According to the analysis, integrating 2.5 MW of PV capacity and a 1.2 MVA battery bank to offset existing diesel and grid consumption would result in an energy cost of BDT 14.60 per kWh (USD 0.1719 per kWh). For high PV penetration scenarios, the application of this method offers higher system robustness, and the financial analysis indicates that the industries would not only benefit from positive environmental impact but also make an economic profit. |
doi_str_mv | 10.3390/su14148921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2694091091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694091091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-41cfaac253e1e6657d8a6327b0b8cafb26b80565b0dd79be0d87b92ffb724ef73</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqb34CwLehNV87Fe8lVJtoaJo9bok2aSb0k3WJHvovzdSQR8DbxiGN7wB4BqjO0oZug8jznFeM4LPwISgCmcYFej8H78EsxD2KA2lmOFyAoal7biVqlc2QqfhuztwD18_4cqFaOwOLvjApYlHaCzk8E31Liq4tu0Yojf8AJ-N9G7nTfsA5_BZxc61RiZ9q2RnXbaUzrreSDgfBu-47K7AheaHoGa_ewo-HpfbxSrbvDytF_NNJgkrYpZjqTmXpKAKq7IsqrbmJSWVQKKWXAtSihoVZSFQ21ZMKNTWlWBEa1GRXOmKTsHN6W6K_RpViM3ejd6myIaULEcMJyTX7cmVngjBK90M3vTcHxuMmp9Sm79S6TdrRWm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694091091</pqid></control><display><type>article</type><title>Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Arif, Shaila ; Rabbi, Ata E ; Ahmed, Shams Uddin ; Hossain Lipu, Molla Shahadat ; Jamal, Taskin ; Aziz, Tareq ; Sarker, Mahidur R. ; Riaz, Amna ; Alharbi, Talal ; Hussain, Muhammad Majid</creator><creatorcontrib>Arif, Shaila ; Rabbi, Ata E ; Ahmed, Shams Uddin ; Hossain Lipu, Molla Shahadat ; Jamal, Taskin ; Aziz, Tareq ; Sarker, Mahidur R. ; Riaz, Amna ; Alharbi, Talal ; Hussain, Muhammad Majid</creatorcontrib><description>To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an essential role in designing and planning such microgrids. PV hosting capacity assessment determines the maximum PV capacity suitable for the grid and the appropriate electrical location for PV placement. This research reveals that conventional static criteria to assess the PV hosting capacity fail to ensure the grid’s operational robustness. It hence demands a reduction in the theoretical hosting capacity estimation to ensure grid compatible post-fault voltage and frequency recovery. Energy storage technologies, particularly fast-responsive batteries, can potentially prevent such undesirable scenarios; nevertheless, careful integration is required to ensure an affordable cost of energy. This study proposes a novel methodical techno-economic approach for an off-grid remote industrial microgrid to enhance the PV hosting capacity by integrating battery energy storage considering grid disturbance and recovery scenarios. The method has been validated in an industrial microgrid with a 2.6 MW peak demand in a ready-made garment (RMG) factory having a distinctive demand pattern and unique constraints in remote Bangladesh. According to the analysis, integrating 2.5 MW of PV capacity and a 1.2 MVA battery bank to offset existing diesel and grid consumption would result in an energy cost of BDT 14.60 per kWh (USD 0.1719 per kWh). For high PV penetration scenarios, the application of this method offers higher system robustness, and the financial analysis indicates that the industries would not only benefit from positive environmental impact but also make an economic profit.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14148921</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Batteries ; Developing countries ; Distributed generation ; Economics ; Electric power demand ; Energy recovery ; Energy resources ; Energy sources ; Energy storage ; Factories ; Feasibility studies ; Generators ; Impact analysis ; Industrial development ; LDCs ; Peak demand ; Power supply ; Solar energy ; Storage batteries ; Sustainable development</subject><ispartof>Sustainability, 2022-07, Vol.14 (14), p.8921</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-41cfaac253e1e6657d8a6327b0b8cafb26b80565b0dd79be0d87b92ffb724ef73</citedby><cites>FETCH-LOGICAL-c295t-41cfaac253e1e6657d8a6327b0b8cafb26b80565b0dd79be0d87b92ffb724ef73</cites><orcidid>0000-0001-9060-4454 ; 0000-0001-9858-4152 ; 0000-0002-6255-6966 ; 0000-0002-6874-9371 ; 0000-0002-5363-6219 ; 0000-0001-7888-7105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Arif, Shaila</creatorcontrib><creatorcontrib>Rabbi, Ata E</creatorcontrib><creatorcontrib>Ahmed, Shams Uddin</creatorcontrib><creatorcontrib>Hossain Lipu, Molla Shahadat</creatorcontrib><creatorcontrib>Jamal, Taskin</creatorcontrib><creatorcontrib>Aziz, Tareq</creatorcontrib><creatorcontrib>Sarker, Mahidur R.</creatorcontrib><creatorcontrib>Riaz, Amna</creatorcontrib><creatorcontrib>Alharbi, Talal</creatorcontrib><creatorcontrib>Hussain, Muhammad Majid</creatorcontrib><title>Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach</title><title>Sustainability</title><description>To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an essential role in designing and planning such microgrids. PV hosting capacity assessment determines the maximum PV capacity suitable for the grid and the appropriate electrical location for PV placement. This research reveals that conventional static criteria to assess the PV hosting capacity fail to ensure the grid’s operational robustness. It hence demands a reduction in the theoretical hosting capacity estimation to ensure grid compatible post-fault voltage and frequency recovery. Energy storage technologies, particularly fast-responsive batteries, can potentially prevent such undesirable scenarios; nevertheless, careful integration is required to ensure an affordable cost of energy. This study proposes a novel methodical techno-economic approach for an off-grid remote industrial microgrid to enhance the PV hosting capacity by integrating battery energy storage considering grid disturbance and recovery scenarios. The method has been validated in an industrial microgrid with a 2.6 MW peak demand in a ready-made garment (RMG) factory having a distinctive demand pattern and unique constraints in remote Bangladesh. According to the analysis, integrating 2.5 MW of PV capacity and a 1.2 MVA battery bank to offset existing diesel and grid consumption would result in an energy cost of BDT 14.60 per kWh (USD 0.1719 per kWh). For high PV penetration scenarios, the application of this method offers higher system robustness, and the financial analysis indicates that the industries would not only benefit from positive environmental impact but also make an economic profit.</description><subject>Batteries</subject><subject>Developing countries</subject><subject>Distributed generation</subject><subject>Economics</subject><subject>Electric power demand</subject><subject>Energy recovery</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Factories</subject><subject>Feasibility studies</subject><subject>Generators</subject><subject>Impact analysis</subject><subject>Industrial development</subject><subject>LDCs</subject><subject>Peak demand</subject><subject>Power supply</subject><subject>Solar energy</subject><subject>Storage batteries</subject><subject>Sustainable development</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUE1LAzEUDKJgqb34CwLehNV87Fe8lVJtoaJo9bok2aSb0k3WJHvovzdSQR8DbxiGN7wB4BqjO0oZug8jznFeM4LPwISgCmcYFej8H78EsxD2KA2lmOFyAoal7biVqlc2QqfhuztwD18_4cqFaOwOLvjApYlHaCzk8E31Liq4tu0Yojf8AJ-N9G7nTfsA5_BZxc61RiZ9q2RnXbaUzrreSDgfBu-47K7AheaHoGa_ewo-HpfbxSrbvDytF_NNJgkrYpZjqTmXpKAKq7IsqrbmJSWVQKKWXAtSihoVZSFQ21ZMKNTWlWBEa1GRXOmKTsHN6W6K_RpViM3ejd6myIaULEcMJyTX7cmVngjBK90M3vTcHxuMmp9Sm79S6TdrRWm8</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Arif, Shaila</creator><creator>Rabbi, Ata E</creator><creator>Ahmed, Shams Uddin</creator><creator>Hossain Lipu, Molla Shahadat</creator><creator>Jamal, Taskin</creator><creator>Aziz, Tareq</creator><creator>Sarker, Mahidur R.</creator><creator>Riaz, Amna</creator><creator>Alharbi, Talal</creator><creator>Hussain, Muhammad Majid</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9060-4454</orcidid><orcidid>https://orcid.org/0000-0001-9858-4152</orcidid><orcidid>https://orcid.org/0000-0002-6255-6966</orcidid><orcidid>https://orcid.org/0000-0002-6874-9371</orcidid><orcidid>https://orcid.org/0000-0002-5363-6219</orcidid><orcidid>https://orcid.org/0000-0001-7888-7105</orcidid></search><sort><creationdate>20220701</creationdate><title>Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach</title><author>Arif, Shaila ; Rabbi, Ata E ; Ahmed, Shams Uddin ; Hossain Lipu, Molla Shahadat ; Jamal, Taskin ; Aziz, Tareq ; Sarker, Mahidur R. ; Riaz, Amna ; Alharbi, Talal ; Hussain, Muhammad Majid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-41cfaac253e1e6657d8a6327b0b8cafb26b80565b0dd79be0d87b92ffb724ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Developing countries</topic><topic>Distributed generation</topic><topic>Economics</topic><topic>Electric power demand</topic><topic>Energy recovery</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Factories</topic><topic>Feasibility studies</topic><topic>Generators</topic><topic>Impact analysis</topic><topic>Industrial development</topic><topic>LDCs</topic><topic>Peak demand</topic><topic>Power supply</topic><topic>Solar energy</topic><topic>Storage batteries</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arif, Shaila</creatorcontrib><creatorcontrib>Rabbi, Ata E</creatorcontrib><creatorcontrib>Ahmed, Shams Uddin</creatorcontrib><creatorcontrib>Hossain Lipu, Molla Shahadat</creatorcontrib><creatorcontrib>Jamal, Taskin</creatorcontrib><creatorcontrib>Aziz, Tareq</creatorcontrib><creatorcontrib>Sarker, Mahidur R.</creatorcontrib><creatorcontrib>Riaz, Amna</creatorcontrib><creatorcontrib>Alharbi, Talal</creatorcontrib><creatorcontrib>Hussain, Muhammad Majid</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arif, Shaila</au><au>Rabbi, Ata E</au><au>Ahmed, Shams Uddin</au><au>Hossain Lipu, Molla Shahadat</au><au>Jamal, Taskin</au><au>Aziz, Tareq</au><au>Sarker, Mahidur R.</au><au>Riaz, Amna</au><au>Alharbi, Talal</au><au>Hussain, Muhammad Majid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach</atitle><jtitle>Sustainability</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>14</volume><issue>14</issue><spage>8921</spage><pages>8921-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an essential role in designing and planning such microgrids. PV hosting capacity assessment determines the maximum PV capacity suitable for the grid and the appropriate electrical location for PV placement. This research reveals that conventional static criteria to assess the PV hosting capacity fail to ensure the grid’s operational robustness. It hence demands a reduction in the theoretical hosting capacity estimation to ensure grid compatible post-fault voltage and frequency recovery. Energy storage technologies, particularly fast-responsive batteries, can potentially prevent such undesirable scenarios; nevertheless, careful integration is required to ensure an affordable cost of energy. This study proposes a novel methodical techno-economic approach for an off-grid remote industrial microgrid to enhance the PV hosting capacity by integrating battery energy storage considering grid disturbance and recovery scenarios. The method has been validated in an industrial microgrid with a 2.6 MW peak demand in a ready-made garment (RMG) factory having a distinctive demand pattern and unique constraints in remote Bangladesh. According to the analysis, integrating 2.5 MW of PV capacity and a 1.2 MVA battery bank to offset existing diesel and grid consumption would result in an energy cost of BDT 14.60 per kWh (USD 0.1719 per kWh). For high PV penetration scenarios, the application of this method offers higher system robustness, and the financial analysis indicates that the industries would not only benefit from positive environmental impact but also make an economic profit.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14148921</doi><orcidid>https://orcid.org/0000-0001-9060-4454</orcidid><orcidid>https://orcid.org/0000-0001-9858-4152</orcidid><orcidid>https://orcid.org/0000-0002-6255-6966</orcidid><orcidid>https://orcid.org/0000-0002-6874-9371</orcidid><orcidid>https://orcid.org/0000-0002-5363-6219</orcidid><orcidid>https://orcid.org/0000-0001-7888-7105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-07, Vol.14 (14), p.8921 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2694091091 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Batteries Developing countries Distributed generation Economics Electric power demand Energy recovery Energy resources Energy sources Energy storage Factories Feasibility studies Generators Impact analysis Industrial development LDCs Peak demand Power supply Solar energy Storage batteries Sustainable development |
title | Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Solar%20PV%20Hosting%20Capacity%20in%20a%20Remote%20Industrial%20Microgrid:%20A%20Methodical%20Techno-Economic%20Approach&rft.jtitle=Sustainability&rft.au=Arif,%20Shaila&rft.date=2022-07-01&rft.volume=14&rft.issue=14&rft.spage=8921&rft.pages=8921-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14148921&rft_dat=%3Cproquest_cross%3E2694091091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694091091&rft_id=info:pmid/&rfr_iscdi=true |