Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach

To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an esse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-07, Vol.14 (14), p.8921
Hauptverfasser: Arif, Shaila, Rabbi, Ata E, Ahmed, Shams Uddin, Hossain Lipu, Molla Shahadat, Jamal, Taskin, Aziz, Tareq, Sarker, Mahidur R., Riaz, Amna, Alharbi, Talal, Hussain, Muhammad Majid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 8921
container_title Sustainability
container_volume 14
creator Arif, Shaila
Rabbi, Ata E
Ahmed, Shams Uddin
Hossain Lipu, Molla Shahadat
Jamal, Taskin
Aziz, Tareq
Sarker, Mahidur R.
Riaz, Amna
Alharbi, Talal
Hussain, Muhammad Majid
description To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an essential role in designing and planning such microgrids. PV hosting capacity assessment determines the maximum PV capacity suitable for the grid and the appropriate electrical location for PV placement. This research reveals that conventional static criteria to assess the PV hosting capacity fail to ensure the grid’s operational robustness. It hence demands a reduction in the theoretical hosting capacity estimation to ensure grid compatible post-fault voltage and frequency recovery. Energy storage technologies, particularly fast-responsive batteries, can potentially prevent such undesirable scenarios; nevertheless, careful integration is required to ensure an affordable cost of energy. This study proposes a novel methodical techno-economic approach for an off-grid remote industrial microgrid to enhance the PV hosting capacity by integrating battery energy storage considering grid disturbance and recovery scenarios. The method has been validated in an industrial microgrid with a 2.6 MW peak demand in a ready-made garment (RMG) factory having a distinctive demand pattern and unique constraints in remote Bangladesh. According to the analysis, integrating 2.5 MW of PV capacity and a 1.2 MVA battery bank to offset existing diesel and grid consumption would result in an energy cost of BDT 14.60 per kWh (USD 0.1719 per kWh). For high PV penetration scenarios, the application of this method offers higher system robustness, and the financial analysis indicates that the industries would not only benefit from positive environmental impact but also make an economic profit.
doi_str_mv 10.3390/su14148921
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2694091091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694091091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-41cfaac253e1e6657d8a6327b0b8cafb26b80565b0dd79be0d87b92ffb724ef73</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqb34CwLehNV87Fe8lVJtoaJo9bok2aSb0k3WJHvovzdSQR8DbxiGN7wB4BqjO0oZug8jznFeM4LPwISgCmcYFej8H78EsxD2KA2lmOFyAoal7biVqlc2QqfhuztwD18_4cqFaOwOLvjApYlHaCzk8E31Liq4tu0Yojf8AJ-N9G7nTfsA5_BZxc61RiZ9q2RnXbaUzrreSDgfBu-47K7AheaHoGa_ewo-HpfbxSrbvDytF_NNJgkrYpZjqTmXpKAKq7IsqrbmJSWVQKKWXAtSihoVZSFQ21ZMKNTWlWBEa1GRXOmKTsHN6W6K_RpViM3ejd6myIaULEcMJyTX7cmVngjBK90M3vTcHxuMmp9Sm79S6TdrRWm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694091091</pqid></control><display><type>article</type><title>Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Arif, Shaila ; Rabbi, Ata E ; Ahmed, Shams Uddin ; Hossain Lipu, Molla Shahadat ; Jamal, Taskin ; Aziz, Tareq ; Sarker, Mahidur R. ; Riaz, Amna ; Alharbi, Talal ; Hussain, Muhammad Majid</creator><creatorcontrib>Arif, Shaila ; Rabbi, Ata E ; Ahmed, Shams Uddin ; Hossain Lipu, Molla Shahadat ; Jamal, Taskin ; Aziz, Tareq ; Sarker, Mahidur R. ; Riaz, Amna ; Alharbi, Talal ; Hussain, Muhammad Majid</creatorcontrib><description>To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an essential role in designing and planning such microgrids. PV hosting capacity assessment determines the maximum PV capacity suitable for the grid and the appropriate electrical location for PV placement. This research reveals that conventional static criteria to assess the PV hosting capacity fail to ensure the grid’s operational robustness. It hence demands a reduction in the theoretical hosting capacity estimation to ensure grid compatible post-fault voltage and frequency recovery. Energy storage technologies, particularly fast-responsive batteries, can potentially prevent such undesirable scenarios; nevertheless, careful integration is required to ensure an affordable cost of energy. This study proposes a novel methodical techno-economic approach for an off-grid remote industrial microgrid to enhance the PV hosting capacity by integrating battery energy storage considering grid disturbance and recovery scenarios. The method has been validated in an industrial microgrid with a 2.6 MW peak demand in a ready-made garment (RMG) factory having a distinctive demand pattern and unique constraints in remote Bangladesh. According to the analysis, integrating 2.5 MW of PV capacity and a 1.2 MVA battery bank to offset existing diesel and grid consumption would result in an energy cost of BDT 14.60 per kWh (USD 0.1719 per kWh). For high PV penetration scenarios, the application of this method offers higher system robustness, and the financial analysis indicates that the industries would not only benefit from positive environmental impact but also make an economic profit.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14148921</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Batteries ; Developing countries ; Distributed generation ; Economics ; Electric power demand ; Energy recovery ; Energy resources ; Energy sources ; Energy storage ; Factories ; Feasibility studies ; Generators ; Impact analysis ; Industrial development ; LDCs ; Peak demand ; Power supply ; Solar energy ; Storage batteries ; Sustainable development</subject><ispartof>Sustainability, 2022-07, Vol.14 (14), p.8921</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-41cfaac253e1e6657d8a6327b0b8cafb26b80565b0dd79be0d87b92ffb724ef73</citedby><cites>FETCH-LOGICAL-c295t-41cfaac253e1e6657d8a6327b0b8cafb26b80565b0dd79be0d87b92ffb724ef73</cites><orcidid>0000-0001-9060-4454 ; 0000-0001-9858-4152 ; 0000-0002-6255-6966 ; 0000-0002-6874-9371 ; 0000-0002-5363-6219 ; 0000-0001-7888-7105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Arif, Shaila</creatorcontrib><creatorcontrib>Rabbi, Ata E</creatorcontrib><creatorcontrib>Ahmed, Shams Uddin</creatorcontrib><creatorcontrib>Hossain Lipu, Molla Shahadat</creatorcontrib><creatorcontrib>Jamal, Taskin</creatorcontrib><creatorcontrib>Aziz, Tareq</creatorcontrib><creatorcontrib>Sarker, Mahidur R.</creatorcontrib><creatorcontrib>Riaz, Amna</creatorcontrib><creatorcontrib>Alharbi, Talal</creatorcontrib><creatorcontrib>Hussain, Muhammad Majid</creatorcontrib><title>Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach</title><title>Sustainability</title><description>To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an essential role in designing and planning such microgrids. PV hosting capacity assessment determines the maximum PV capacity suitable for the grid and the appropriate electrical location for PV placement. This research reveals that conventional static criteria to assess the PV hosting capacity fail to ensure the grid’s operational robustness. It hence demands a reduction in the theoretical hosting capacity estimation to ensure grid compatible post-fault voltage and frequency recovery. Energy storage technologies, particularly fast-responsive batteries, can potentially prevent such undesirable scenarios; nevertheless, careful integration is required to ensure an affordable cost of energy. This study proposes a novel methodical techno-economic approach for an off-grid remote industrial microgrid to enhance the PV hosting capacity by integrating battery energy storage considering grid disturbance and recovery scenarios. The method has been validated in an industrial microgrid with a 2.6 MW peak demand in a ready-made garment (RMG) factory having a distinctive demand pattern and unique constraints in remote Bangladesh. According to the analysis, integrating 2.5 MW of PV capacity and a 1.2 MVA battery bank to offset existing diesel and grid consumption would result in an energy cost of BDT 14.60 per kWh (USD 0.1719 per kWh). For high PV penetration scenarios, the application of this method offers higher system robustness, and the financial analysis indicates that the industries would not only benefit from positive environmental impact but also make an economic profit.</description><subject>Batteries</subject><subject>Developing countries</subject><subject>Distributed generation</subject><subject>Economics</subject><subject>Electric power demand</subject><subject>Energy recovery</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Factories</subject><subject>Feasibility studies</subject><subject>Generators</subject><subject>Impact analysis</subject><subject>Industrial development</subject><subject>LDCs</subject><subject>Peak demand</subject><subject>Power supply</subject><subject>Solar energy</subject><subject>Storage batteries</subject><subject>Sustainable development</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUE1LAzEUDKJgqb34CwLehNV87Fe8lVJtoaJo9bok2aSb0k3WJHvovzdSQR8DbxiGN7wB4BqjO0oZug8jznFeM4LPwISgCmcYFej8H78EsxD2KA2lmOFyAoal7biVqlc2QqfhuztwD18_4cqFaOwOLvjApYlHaCzk8E31Liq4tu0Yojf8AJ-N9G7nTfsA5_BZxc61RiZ9q2RnXbaUzrreSDgfBu-47K7AheaHoGa_ewo-HpfbxSrbvDytF_NNJgkrYpZjqTmXpKAKq7IsqrbmJSWVQKKWXAtSihoVZSFQ21ZMKNTWlWBEa1GRXOmKTsHN6W6K_RpViM3ejd6myIaULEcMJyTX7cmVngjBK90M3vTcHxuMmp9Sm79S6TdrRWm8</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Arif, Shaila</creator><creator>Rabbi, Ata E</creator><creator>Ahmed, Shams Uddin</creator><creator>Hossain Lipu, Molla Shahadat</creator><creator>Jamal, Taskin</creator><creator>Aziz, Tareq</creator><creator>Sarker, Mahidur R.</creator><creator>Riaz, Amna</creator><creator>Alharbi, Talal</creator><creator>Hussain, Muhammad Majid</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9060-4454</orcidid><orcidid>https://orcid.org/0000-0001-9858-4152</orcidid><orcidid>https://orcid.org/0000-0002-6255-6966</orcidid><orcidid>https://orcid.org/0000-0002-6874-9371</orcidid><orcidid>https://orcid.org/0000-0002-5363-6219</orcidid><orcidid>https://orcid.org/0000-0001-7888-7105</orcidid></search><sort><creationdate>20220701</creationdate><title>Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach</title><author>Arif, Shaila ; Rabbi, Ata E ; Ahmed, Shams Uddin ; Hossain Lipu, Molla Shahadat ; Jamal, Taskin ; Aziz, Tareq ; Sarker, Mahidur R. ; Riaz, Amna ; Alharbi, Talal ; Hussain, Muhammad Majid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-41cfaac253e1e6657d8a6327b0b8cafb26b80565b0dd79be0d87b92ffb724ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Developing countries</topic><topic>Distributed generation</topic><topic>Economics</topic><topic>Electric power demand</topic><topic>Energy recovery</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Factories</topic><topic>Feasibility studies</topic><topic>Generators</topic><topic>Impact analysis</topic><topic>Industrial development</topic><topic>LDCs</topic><topic>Peak demand</topic><topic>Power supply</topic><topic>Solar energy</topic><topic>Storage batteries</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arif, Shaila</creatorcontrib><creatorcontrib>Rabbi, Ata E</creatorcontrib><creatorcontrib>Ahmed, Shams Uddin</creatorcontrib><creatorcontrib>Hossain Lipu, Molla Shahadat</creatorcontrib><creatorcontrib>Jamal, Taskin</creatorcontrib><creatorcontrib>Aziz, Tareq</creatorcontrib><creatorcontrib>Sarker, Mahidur R.</creatorcontrib><creatorcontrib>Riaz, Amna</creatorcontrib><creatorcontrib>Alharbi, Talal</creatorcontrib><creatorcontrib>Hussain, Muhammad Majid</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arif, Shaila</au><au>Rabbi, Ata E</au><au>Ahmed, Shams Uddin</au><au>Hossain Lipu, Molla Shahadat</au><au>Jamal, Taskin</au><au>Aziz, Tareq</au><au>Sarker, Mahidur R.</au><au>Riaz, Amna</au><au>Alharbi, Talal</au><au>Hussain, Muhammad Majid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach</atitle><jtitle>Sustainability</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>14</volume><issue>14</issue><spage>8921</spage><pages>8921-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>To meet the zero-carbon electricity generation target as part of the sustainable development goals (SDG7), remote industrial microgrids worldwide are considering the uptake of more and more renewable energy resources, especially solar PV systems. Estimating the grid PV hosting capacity plays an essential role in designing and planning such microgrids. PV hosting capacity assessment determines the maximum PV capacity suitable for the grid and the appropriate electrical location for PV placement. This research reveals that conventional static criteria to assess the PV hosting capacity fail to ensure the grid’s operational robustness. It hence demands a reduction in the theoretical hosting capacity estimation to ensure grid compatible post-fault voltage and frequency recovery. Energy storage technologies, particularly fast-responsive batteries, can potentially prevent such undesirable scenarios; nevertheless, careful integration is required to ensure an affordable cost of energy. This study proposes a novel methodical techno-economic approach for an off-grid remote industrial microgrid to enhance the PV hosting capacity by integrating battery energy storage considering grid disturbance and recovery scenarios. The method has been validated in an industrial microgrid with a 2.6 MW peak demand in a ready-made garment (RMG) factory having a distinctive demand pattern and unique constraints in remote Bangladesh. According to the analysis, integrating 2.5 MW of PV capacity and a 1.2 MVA battery bank to offset existing diesel and grid consumption would result in an energy cost of BDT 14.60 per kWh (USD 0.1719 per kWh). For high PV penetration scenarios, the application of this method offers higher system robustness, and the financial analysis indicates that the industries would not only benefit from positive environmental impact but also make an economic profit.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14148921</doi><orcidid>https://orcid.org/0000-0001-9060-4454</orcidid><orcidid>https://orcid.org/0000-0001-9858-4152</orcidid><orcidid>https://orcid.org/0000-0002-6255-6966</orcidid><orcidid>https://orcid.org/0000-0002-6874-9371</orcidid><orcidid>https://orcid.org/0000-0002-5363-6219</orcidid><orcidid>https://orcid.org/0000-0001-7888-7105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-07, Vol.14 (14), p.8921
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2694091091
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Batteries
Developing countries
Distributed generation
Economics
Electric power demand
Energy recovery
Energy resources
Energy sources
Energy storage
Factories
Feasibility studies
Generators
Impact analysis
Industrial development
LDCs
Peak demand
Power supply
Solar energy
Storage batteries
Sustainable development
title Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Solar%20PV%20Hosting%20Capacity%20in%20a%20Remote%20Industrial%20Microgrid:%20A%20Methodical%20Techno-Economic%20Approach&rft.jtitle=Sustainability&rft.au=Arif,%20Shaila&rft.date=2022-07-01&rft.volume=14&rft.issue=14&rft.spage=8921&rft.pages=8921-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14148921&rft_dat=%3Cproquest_cross%3E2694091091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694091091&rft_id=info:pmid/&rfr_iscdi=true