A High-Stability Regulation Circuit with Adaptive Linear Pole–Zero Tracking Compensation for USB Type-C Interface
We present a high-stability regulation circuit to ensure the safety of a device within a wide range of the back-sink current for a USB Type-C interface application. The proposed adaptive linear pole–zero tracking compensation can linearly compensate for the changes in the back-sink current, thereby...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-07, Vol.11 (14), p.2121 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 2121 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Tang, Hua Wang, Yuanfei Zhang, David Wei |
description | We present a high-stability regulation circuit to ensure the safety of a device within a wide range of the back-sink current for a USB Type-C interface application. The proposed adaptive linear pole–zero tracking compensation can linearly compensate for the changes in the back-sink current, thereby adaptively canceling the pole–zero changes caused by the current changes. The simulation results show that the phase margin remains greater than 60°. Meanwhile, the loop bandwidth changes between 45 kHz and 135 kHz, when the current increases from 0 A to 1 A, ensuring excellent loop stability. The high-stability regulation circuit is realized in a standard 180 nm CMOS process with an area of 0.4 mm × 0.6 mm. The chip regulates an output voltage from 4.5 V to 5.5 V with 1 A current capacity and 100 mV maximum dropout voltage with the help of the adaptive linear pole–zero tracking compensation. |
doi_str_mv | 10.3390/electronics11142121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693981239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693981239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-3b6e58fcb556bf1dc679975925762331fe044e123d94cb5b0b3b2a9b622fa7083</originalsourceid><addsrcrecordid>eNptkD1OAzEUhC0EEhHkBDSWqBf8s38uwwpIpEggkjQ0K9t5Thw268V2QOm4AzfkJCwKBQWvmVd8MyMNQheUXHEuyDU0oKN3rdWBUpoyyugRGjBSiEQwwY7__KdoGMKG9CcoLzkZoDDCY7taJ7MolW1s3OMnWO0aGa1rcWW93tmI321c49FSdtG-AZ7aFqTHj66Br4_PZ_AOz73UL7Zd4cptO2jDwW6cx4vZDZ7vO0gqPGkjeCM1nKMTI5sAw189Q4u723k1TqYP95NqNE00K1hMuMohK41WWZYrQ5c6L4QoMsGyImecUwMkTYEyvhRpDymiuGJSqJwxIwtS8jN0ecjtvHvdQYj1xu1821fWLBdclL1X9BQ_UNq7EDyYuvN2K_2-pqT-Gbj-Z2D-DfM2clI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693981239</pqid></control><display><type>article</type><title>A High-Stability Regulation Circuit with Adaptive Linear Pole–Zero Tracking Compensation for USB Type-C Interface</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tang, Hua ; Wang, Yuanfei ; Zhang, David Wei</creator><creatorcontrib>Tang, Hua ; Wang, Yuanfei ; Zhang, David Wei</creatorcontrib><description>We present a high-stability regulation circuit to ensure the safety of a device within a wide range of the back-sink current for a USB Type-C interface application. The proposed adaptive linear pole–zero tracking compensation can linearly compensate for the changes in the back-sink current, thereby adaptively canceling the pole–zero changes caused by the current changes. The simulation results show that the phase margin remains greater than 60°. Meanwhile, the loop bandwidth changes between 45 kHz and 135 kHz, when the current increases from 0 A to 1 A, ensuring excellent loop stability. The high-stability regulation circuit is realized in a standard 180 nm CMOS process with an area of 0.4 mm × 0.6 mm. The chip regulates an output voltage from 4.5 V to 5.5 V with 1 A current capacity and 100 mV maximum dropout voltage with the help of the adaptive linear pole–zero tracking compensation.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11142121</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bandwidths ; Circuits ; Compensation ; Data buses ; Electric potential ; Interface stability ; Interfaces ; Sensors ; Tracking ; Transistors ; Voltage</subject><ispartof>Electronics (Basel), 2022-07, Vol.11 (14), p.2121</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-3b6e58fcb556bf1dc679975925762331fe044e123d94cb5b0b3b2a9b622fa7083</cites><orcidid>0000-0003-2247-0997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tang, Hua</creatorcontrib><creatorcontrib>Wang, Yuanfei</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><title>A High-Stability Regulation Circuit with Adaptive Linear Pole–Zero Tracking Compensation for USB Type-C Interface</title><title>Electronics (Basel)</title><description>We present a high-stability regulation circuit to ensure the safety of a device within a wide range of the back-sink current for a USB Type-C interface application. The proposed adaptive linear pole–zero tracking compensation can linearly compensate for the changes in the back-sink current, thereby adaptively canceling the pole–zero changes caused by the current changes. The simulation results show that the phase margin remains greater than 60°. Meanwhile, the loop bandwidth changes between 45 kHz and 135 kHz, when the current increases from 0 A to 1 A, ensuring excellent loop stability. The high-stability regulation circuit is realized in a standard 180 nm CMOS process with an area of 0.4 mm × 0.6 mm. The chip regulates an output voltage from 4.5 V to 5.5 V with 1 A current capacity and 100 mV maximum dropout voltage with the help of the adaptive linear pole–zero tracking compensation.</description><subject>Bandwidths</subject><subject>Circuits</subject><subject>Compensation</subject><subject>Data buses</subject><subject>Electric potential</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Sensors</subject><subject>Tracking</subject><subject>Transistors</subject><subject>Voltage</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkD1OAzEUhC0EEhHkBDSWqBf8s38uwwpIpEggkjQ0K9t5Thw268V2QOm4AzfkJCwKBQWvmVd8MyMNQheUXHEuyDU0oKN3rdWBUpoyyugRGjBSiEQwwY7__KdoGMKG9CcoLzkZoDDCY7taJ7MolW1s3OMnWO0aGa1rcWW93tmI321c49FSdtG-AZ7aFqTHj66Br4_PZ_AOz73UL7Zd4cptO2jDwW6cx4vZDZ7vO0gqPGkjeCM1nKMTI5sAw189Q4u723k1TqYP95NqNE00K1hMuMohK41WWZYrQ5c6L4QoMsGyImecUwMkTYEyvhRpDymiuGJSqJwxIwtS8jN0ecjtvHvdQYj1xu1821fWLBdclL1X9BQ_UNq7EDyYuvN2K_2-pqT-Gbj-Z2D-DfM2clI</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Tang, Hua</creator><creator>Wang, Yuanfei</creator><creator>Zhang, David Wei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2247-0997</orcidid></search><sort><creationdate>20220701</creationdate><title>A High-Stability Regulation Circuit with Adaptive Linear Pole–Zero Tracking Compensation for USB Type-C Interface</title><author>Tang, Hua ; Wang, Yuanfei ; Zhang, David Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-3b6e58fcb556bf1dc679975925762331fe044e123d94cb5b0b3b2a9b622fa7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bandwidths</topic><topic>Circuits</topic><topic>Compensation</topic><topic>Data buses</topic><topic>Electric potential</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Sensors</topic><topic>Tracking</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hua</creatorcontrib><creatorcontrib>Wang, Yuanfei</creatorcontrib><creatorcontrib>Zhang, David Wei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hua</au><au>Wang, Yuanfei</au><au>Zhang, David Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Stability Regulation Circuit with Adaptive Linear Pole–Zero Tracking Compensation for USB Type-C Interface</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>11</volume><issue>14</issue><spage>2121</spage><pages>2121-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>We present a high-stability regulation circuit to ensure the safety of a device within a wide range of the back-sink current for a USB Type-C interface application. The proposed adaptive linear pole–zero tracking compensation can linearly compensate for the changes in the back-sink current, thereby adaptively canceling the pole–zero changes caused by the current changes. The simulation results show that the phase margin remains greater than 60°. Meanwhile, the loop bandwidth changes between 45 kHz and 135 kHz, when the current increases from 0 A to 1 A, ensuring excellent loop stability. The high-stability regulation circuit is realized in a standard 180 nm CMOS process with an area of 0.4 mm × 0.6 mm. The chip regulates an output voltage from 4.5 V to 5.5 V with 1 A current capacity and 100 mV maximum dropout voltage with the help of the adaptive linear pole–zero tracking compensation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11142121</doi><orcidid>https://orcid.org/0000-0003-2247-0997</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-07, Vol.11 (14), p.2121 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2693981239 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Bandwidths Circuits Compensation Data buses Electric potential Interface stability Interfaces Sensors Tracking Transistors Voltage |
title | A High-Stability Regulation Circuit with Adaptive Linear Pole–Zero Tracking Compensation for USB Type-C Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Stability%20Regulation%20Circuit%20with%20Adaptive%20Linear%20Pole%E2%80%93Zero%20Tracking%20Compensation%20for%20USB%20Type-C%20Interface&rft.jtitle=Electronics%20(Basel)&rft.au=Tang,%20Hua&rft.date=2022-07-01&rft.volume=11&rft.issue=14&rft.spage=2121&rft.pages=2121-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11142121&rft_dat=%3Cproquest_cross%3E2693981239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693981239&rft_id=info:pmid/&rfr_iscdi=true |