Simulation Analysis of Organic–Inorganic Interface Failure of Scallop under Ultra-High Pressure

Shell is a typical biomineralized inorganic–organic composite material. The essence of scallop deshelling is caused by the fracture failure at the interface of the organic and inorganic–organic matter composites. The constitutive equations were solved so that the stress distributions of the adductor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-07, Vol.12 (7), p.963
Hauptverfasser: Chang, Jiang, Gong, Xue, Zhang, Yinglei, Sun, Zhihui, Xia, Ning, Zhang, Huajiang, Wang, Jing, Zhang, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 963
container_title Coatings (Basel)
container_volume 12
creator Chang, Jiang
Gong, Xue
Zhang, Yinglei
Sun, Zhihui
Xia, Ning
Zhang, Huajiang
Wang, Jing
Zhang, Xiang
description Shell is a typical biomineralized inorganic–organic composite material. The essence of scallop deshelling is caused by the fracture failure at the interface of the organic and inorganic–organic matter composites. The constitutive equations were solved so that the stress distributions of the adductor in the radial, circumferential, and axial directions were obtained as σr = σθ = P, σz = 2(2 − ν)P/(2ν − 1), and the shear stress was τzr = 0. Using the method of finite element simulation analysis, the stress distribution laws at different interface states were obtained. The experimental results show that when the amplitude is constant, the undulation period is smaller than the diameter of the adductor or the angle between the bus of the adductor, and the reference horizontal plane gradually decreases, so the interface is more likely to yield. After the analysis, the maximum stress for the yielding of the scallop interface was about 247 MPa, and the whole deshelling process was gradually spread from the outer edge of the interface to the center. The study analyzed the scallop organic–inorganic material interface from the perspective of mechanics, and the mechanical model and simulation analysis results were consistent with the parameter optimization results, which can provide some theoretical basis for the composite material interface failure and in-depth research.
doi_str_mv 10.3390/coatings12070963
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693960362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693960362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-278f8b60f021a5d2eb71963dfb3588dd27a66fca9ff3835249f2f40d2cf596f43</originalsourceid><addsrcrecordid>eNpdkL1OwzAURi0EElXpzmiJOeCfxInHqqI0UqUilc6R6_gWV6ld7GToxjvwhjwJrsqAuMs9w7lX-j6E7il55FySJ-1Vb90uUkZKIgW_QqNEMhM5Zdd_-BZNYtyTNJLyisoRUmt7GLp07R2eOtWdoo3YA16FnXJWf39-1c5fGNeuNwGUNniubDcEcxbXWnWdP-LBtSbgTdcHlS3s7h2_BhNjku7QDagumsnvHqPN_PlttsiWq5d6Nl1mmlPeZ6ysoNoKAoRRVbTMbEuakrSw5UVVtS0rlRCglQTgFS9YLoFBTlqmoZACcj5GD5e_x-A_BhP7Zu-HkCLFhgnJpSBcsGSRi6WDjzEYaI7BHlQ4NZQ05y6b_13yHyZBapo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693960362</pqid></control><display><type>article</type><title>Simulation Analysis of Organic–Inorganic Interface Failure of Scallop under Ultra-High Pressure</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chang, Jiang ; Gong, Xue ; Zhang, Yinglei ; Sun, Zhihui ; Xia, Ning ; Zhang, Huajiang ; Wang, Jing ; Zhang, Xiang</creator><creatorcontrib>Chang, Jiang ; Gong, Xue ; Zhang, Yinglei ; Sun, Zhihui ; Xia, Ning ; Zhang, Huajiang ; Wang, Jing ; Zhang, Xiang</creatorcontrib><description>Shell is a typical biomineralized inorganic–organic composite material. The essence of scallop deshelling is caused by the fracture failure at the interface of the organic and inorganic–organic matter composites. The constitutive equations were solved so that the stress distributions of the adductor in the radial, circumferential, and axial directions were obtained as σr = σθ = P, σz = 2(2 − ν)P/(2ν − 1), and the shear stress was τzr = 0. Using the method of finite element simulation analysis, the stress distribution laws at different interface states were obtained. The experimental results show that when the amplitude is constant, the undulation period is smaller than the diameter of the adductor or the angle between the bus of the adductor, and the reference horizontal plane gradually decreases, so the interface is more likely to yield. After the analysis, the maximum stress for the yielding of the scallop interface was about 247 MPa, and the whole deshelling process was gradually spread from the outer edge of the interface to the center. The study analyzed the scallop organic–inorganic material interface from the perspective of mechanics, and the mechanical model and simulation analysis results were consistent with the parameter optimization results, which can provide some theoretical basis for the composite material interface failure and in-depth research.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12070963</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Axial stress ; Composite materials ; Constitutive equations ; Constitutive relationships ; Deformation ; Diameters ; Failure analysis ; Finite element analysis ; Finite element method ; Industrial production ; Mechanical properties ; Optimization ; Organic matter ; Sanitation ; Shear stress ; Shellfish ; Shells ; Simulation ; Stress distribution</subject><ispartof>Coatings (Basel), 2022-07, Vol.12 (7), p.963</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-278f8b60f021a5d2eb71963dfb3588dd27a66fca9ff3835249f2f40d2cf596f43</citedby><cites>FETCH-LOGICAL-c313t-278f8b60f021a5d2eb71963dfb3588dd27a66fca9ff3835249f2f40d2cf596f43</cites><orcidid>0000-0002-8014-7859 ; 0000-0002-6481-4922 ; 0000-0002-4483-8580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chang, Jiang</creatorcontrib><creatorcontrib>Gong, Xue</creatorcontrib><creatorcontrib>Zhang, Yinglei</creatorcontrib><creatorcontrib>Sun, Zhihui</creatorcontrib><creatorcontrib>Xia, Ning</creatorcontrib><creatorcontrib>Zhang, Huajiang</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><title>Simulation Analysis of Organic–Inorganic Interface Failure of Scallop under Ultra-High Pressure</title><title>Coatings (Basel)</title><description>Shell is a typical biomineralized inorganic–organic composite material. The essence of scallop deshelling is caused by the fracture failure at the interface of the organic and inorganic–organic matter composites. The constitutive equations were solved so that the stress distributions of the adductor in the radial, circumferential, and axial directions were obtained as σr = σθ = P, σz = 2(2 − ν)P/(2ν − 1), and the shear stress was τzr = 0. Using the method of finite element simulation analysis, the stress distribution laws at different interface states were obtained. The experimental results show that when the amplitude is constant, the undulation period is smaller than the diameter of the adductor or the angle between the bus of the adductor, and the reference horizontal plane gradually decreases, so the interface is more likely to yield. After the analysis, the maximum stress for the yielding of the scallop interface was about 247 MPa, and the whole deshelling process was gradually spread from the outer edge of the interface to the center. The study analyzed the scallop organic–inorganic material interface from the perspective of mechanics, and the mechanical model and simulation analysis results were consistent with the parameter optimization results, which can provide some theoretical basis for the composite material interface failure and in-depth research.</description><subject>Axial stress</subject><subject>Composite materials</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Diameters</subject><subject>Failure analysis</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Industrial production</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Organic matter</subject><subject>Sanitation</subject><subject>Shear stress</subject><subject>Shellfish</subject><subject>Shells</subject><subject>Simulation</subject><subject>Stress distribution</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkL1OwzAURi0EElXpzmiJOeCfxInHqqI0UqUilc6R6_gWV6ld7GToxjvwhjwJrsqAuMs9w7lX-j6E7il55FySJ-1Vb90uUkZKIgW_QqNEMhM5Zdd_-BZNYtyTNJLyisoRUmt7GLp07R2eOtWdoo3YA16FnXJWf39-1c5fGNeuNwGUNniubDcEcxbXWnWdP-LBtSbgTdcHlS3s7h2_BhNjku7QDagumsnvHqPN_PlttsiWq5d6Nl1mmlPeZ6ysoNoKAoRRVbTMbEuakrSw5UVVtS0rlRCglQTgFS9YLoFBTlqmoZACcj5GD5e_x-A_BhP7Zu-HkCLFhgnJpSBcsGSRi6WDjzEYaI7BHlQ4NZQ05y6b_13yHyZBapo</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Chang, Jiang</creator><creator>Gong, Xue</creator><creator>Zhang, Yinglei</creator><creator>Sun, Zhihui</creator><creator>Xia, Ning</creator><creator>Zhang, Huajiang</creator><creator>Wang, Jing</creator><creator>Zhang, Xiang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8014-7859</orcidid><orcidid>https://orcid.org/0000-0002-6481-4922</orcidid><orcidid>https://orcid.org/0000-0002-4483-8580</orcidid></search><sort><creationdate>20220701</creationdate><title>Simulation Analysis of Organic–Inorganic Interface Failure of Scallop under Ultra-High Pressure</title><author>Chang, Jiang ; Gong, Xue ; Zhang, Yinglei ; Sun, Zhihui ; Xia, Ning ; Zhang, Huajiang ; Wang, Jing ; Zhang, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-278f8b60f021a5d2eb71963dfb3588dd27a66fca9ff3835249f2f40d2cf596f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Axial stress</topic><topic>Composite materials</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Diameters</topic><topic>Failure analysis</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Industrial production</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Organic matter</topic><topic>Sanitation</topic><topic>Shear stress</topic><topic>Shellfish</topic><topic>Shells</topic><topic>Simulation</topic><topic>Stress distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Jiang</creatorcontrib><creatorcontrib>Gong, Xue</creatorcontrib><creatorcontrib>Zhang, Yinglei</creatorcontrib><creatorcontrib>Sun, Zhihui</creatorcontrib><creatorcontrib>Xia, Ning</creatorcontrib><creatorcontrib>Zhang, Huajiang</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Jiang</au><au>Gong, Xue</au><au>Zhang, Yinglei</au><au>Sun, Zhihui</au><au>Xia, Ning</au><au>Zhang, Huajiang</au><au>Wang, Jing</au><au>Zhang, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation Analysis of Organic–Inorganic Interface Failure of Scallop under Ultra-High Pressure</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>963</spage><pages>963-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Shell is a typical biomineralized inorganic–organic composite material. The essence of scallop deshelling is caused by the fracture failure at the interface of the organic and inorganic–organic matter composites. The constitutive equations were solved so that the stress distributions of the adductor in the radial, circumferential, and axial directions were obtained as σr = σθ = P, σz = 2(2 − ν)P/(2ν − 1), and the shear stress was τzr = 0. Using the method of finite element simulation analysis, the stress distribution laws at different interface states were obtained. The experimental results show that when the amplitude is constant, the undulation period is smaller than the diameter of the adductor or the angle between the bus of the adductor, and the reference horizontal plane gradually decreases, so the interface is more likely to yield. After the analysis, the maximum stress for the yielding of the scallop interface was about 247 MPa, and the whole deshelling process was gradually spread from the outer edge of the interface to the center. The study analyzed the scallop organic–inorganic material interface from the perspective of mechanics, and the mechanical model and simulation analysis results were consistent with the parameter optimization results, which can provide some theoretical basis for the composite material interface failure and in-depth research.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12070963</doi><orcidid>https://orcid.org/0000-0002-8014-7859</orcidid><orcidid>https://orcid.org/0000-0002-6481-4922</orcidid><orcidid>https://orcid.org/0000-0002-4483-8580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2022-07, Vol.12 (7), p.963
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2693960362
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Axial stress
Composite materials
Constitutive equations
Constitutive relationships
Deformation
Diameters
Failure analysis
Finite element analysis
Finite element method
Industrial production
Mechanical properties
Optimization
Organic matter
Sanitation
Shear stress
Shellfish
Shells
Simulation
Stress distribution
title Simulation Analysis of Organic–Inorganic Interface Failure of Scallop under Ultra-High Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20Analysis%20of%20Organic%E2%80%93Inorganic%20Interface%20Failure%20of%20Scallop%20under%20Ultra-High%20Pressure&rft.jtitle=Coatings%20(Basel)&rft.au=Chang,%20Jiang&rft.date=2022-07-01&rft.volume=12&rft.issue=7&rft.spage=963&rft.pages=963-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12070963&rft_dat=%3Cproquest_cross%3E2693960362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693960362&rft_id=info:pmid/&rfr_iscdi=true