Silicon carbide/enamel composite coatings for steel corrosion protection: Microstructure, thermal expansion behavior, and anti-corrosion performance
Vitreous enamel coating has been utilized to protect metallic substrates against corrosion and has proven to be effective. Herein, a new low-temperature sintering silicon carbide/enamel composite coating was produced and compared to pure enamel coating. The microstructure, thermal expansion behavior...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2022-03, Vol.434, p.128172, Article 128172 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 128172 |
container_title | Surface & coatings technology |
container_volume | 434 |
creator | Qian, Hao Xu, Zhenwen Chen, Shikun Liu, Yi Yan, Dongming |
description | Vitreous enamel coating has been utilized to protect metallic substrates against corrosion and has proven to be effective. Herein, a new low-temperature sintering silicon carbide/enamel composite coating was produced and compared to pure enamel coating. The microstructure, thermal expansion behavior, and anti-corrosion performance of the prepared coatings were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), dilatometric test, and electrochemical measurements (open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and linear polarization resistance (LPR)). The results indicated that the composite coatings had gradually matched thermal expansion with the steel substrate due to the inclusion of silicon carbide and the raised porosity, which further resulted in the reduction of residual stress and the eradication of surface microcracks. The microstructural alterations increased the anti-corrosion effectiveness of composite coatings, according to the early electrochemical testing (at 24 h). Particularly, the polarization resistance (Rp) of a composite coating containing 7.5 wt% silicon carbide addition was found to be 20 times greater than that of the pure enamel coating. These results imply that the silicon carbide/enamel composite coating outperforms the pure enamel coating and can provide effective corrosion protection for steel.
[Display omitted]
•Silicon carbide/enamel composite coating was developed for steel corrosion protection.•Coating phases were segmented and quantified through grayscale threshold method.•Silicon carbide helped to reduce residual stress and eliminate microcracks in enamel coating.•Composite coating provided more effective corrosion protection than pure enamel coating. |
doi_str_mv | 10.1016/j.surfcoat.2022.128172 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693932850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897222000937</els_id><sourcerecordid>2693932850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ad7f70e62317dcda6b83cca8ec9dbb745207f71ca82d001bac78a5781cba2d613</originalsourceid><addsrcrecordid>eNqFUU1LAzEQDaJgrf4FCXjt1iTbbnY9KcUvqHhQzyGbzNqU7qZOsqL_wx9s2ip48xAmzLz3hjePkFPOxpzx4nw5Dj02xus4FkyIMRcll2KPDHgpqyzPJ3KfDJiYyqyspDgkRyEsGWNcVpMB-XpyK2d8R43G2lk4h063sKLGt2sfXAS6EXbda6CNRxoibIeIaZhYa_QRTEzfC_rgTOpG7E3sEUY0LgBbvaLwsdbdFl3DQr87jyOqO5tedNkfKcC0odWdgWNy0OhVgJOfOiQvN9fPs7ts_nh7P7uaZyafsJhpKxvJoBA5l9ZYXdRlbowuwVS2ruVkKlgC8NQRNvmttZGlnsqSm1oLW_B8SM52usnGWw8hqqXvsUsrlSiqvMpFOWUJVexQG3sBoVFrdK3GT8WZ2iSgluo3AbVJQO0SSMTLHRGSh3cHqIJxkPxZh-loynr3n8Q3TkiYEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693932850</pqid></control><display><type>article</type><title>Silicon carbide/enamel composite coatings for steel corrosion protection: Microstructure, thermal expansion behavior, and anti-corrosion performance</title><source>Elsevier ScienceDirect Journals</source><creator>Qian, Hao ; Xu, Zhenwen ; Chen, Shikun ; Liu, Yi ; Yan, Dongming</creator><creatorcontrib>Qian, Hao ; Xu, Zhenwen ; Chen, Shikun ; Liu, Yi ; Yan, Dongming</creatorcontrib><description>Vitreous enamel coating has been utilized to protect metallic substrates against corrosion and has proven to be effective. Herein, a new low-temperature sintering silicon carbide/enamel composite coating was produced and compared to pure enamel coating. The microstructure, thermal expansion behavior, and anti-corrosion performance of the prepared coatings were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), dilatometric test, and electrochemical measurements (open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and linear polarization resistance (LPR)). The results indicated that the composite coatings had gradually matched thermal expansion with the steel substrate due to the inclusion of silicon carbide and the raised porosity, which further resulted in the reduction of residual stress and the eradication of surface microcracks. The microstructural alterations increased the anti-corrosion effectiveness of composite coatings, according to the early electrochemical testing (at 24 h). Particularly, the polarization resistance (Rp) of a composite coating containing 7.5 wt% silicon carbide addition was found to be 20 times greater than that of the pure enamel coating. These results imply that the silicon carbide/enamel composite coating outperforms the pure enamel coating and can provide effective corrosion protection for steel.
[Display omitted]
•Silicon carbide/enamel composite coating was developed for steel corrosion protection.•Coating phases were segmented and quantified through grayscale threshold method.•Silicon carbide helped to reduce residual stress and eliminate microcracks in enamel coating.•Composite coating provided more effective corrosion protection than pure enamel coating.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2022.128172</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Composite enamel coating ; Corrosion ; Corrosion prevention ; Corrosion protection ; Dilatometry ; Electrochemical impedance spectroscopy ; Electrode polarization ; Enamel ; Linear polarization ; Low temperature ; Microcracks ; Microstructure ; Open circuit voltage ; Phase separation ; Photoelectrons ; Protective coatings ; Residual stress ; Silicon carbide ; Sintering (powder metallurgy) ; Spectrum analysis ; Steel ; Thermal expansion ; Vitreous enamel ; X ray photoelectron spectroscopy ; X-ray spectroscopy</subject><ispartof>Surface & coatings technology, 2022-03, Vol.434, p.128172, Article 128172</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 25, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-ad7f70e62317dcda6b83cca8ec9dbb745207f71ca82d001bac78a5781cba2d613</citedby><cites>FETCH-LOGICAL-c340t-ad7f70e62317dcda6b83cca8ec9dbb745207f71ca82d001bac78a5781cba2d613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0257897222000937$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Qian, Hao</creatorcontrib><creatorcontrib>Xu, Zhenwen</creatorcontrib><creatorcontrib>Chen, Shikun</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Yan, Dongming</creatorcontrib><title>Silicon carbide/enamel composite coatings for steel corrosion protection: Microstructure, thermal expansion behavior, and anti-corrosion performance</title><title>Surface & coatings technology</title><description>Vitreous enamel coating has been utilized to protect metallic substrates against corrosion and has proven to be effective. Herein, a new low-temperature sintering silicon carbide/enamel composite coating was produced and compared to pure enamel coating. The microstructure, thermal expansion behavior, and anti-corrosion performance of the prepared coatings were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), dilatometric test, and electrochemical measurements (open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and linear polarization resistance (LPR)). The results indicated that the composite coatings had gradually matched thermal expansion with the steel substrate due to the inclusion of silicon carbide and the raised porosity, which further resulted in the reduction of residual stress and the eradication of surface microcracks. The microstructural alterations increased the anti-corrosion effectiveness of composite coatings, according to the early electrochemical testing (at 24 h). Particularly, the polarization resistance (Rp) of a composite coating containing 7.5 wt% silicon carbide addition was found to be 20 times greater than that of the pure enamel coating. These results imply that the silicon carbide/enamel composite coating outperforms the pure enamel coating and can provide effective corrosion protection for steel.
[Display omitted]
•Silicon carbide/enamel composite coating was developed for steel corrosion protection.•Coating phases were segmented and quantified through grayscale threshold method.•Silicon carbide helped to reduce residual stress and eliminate microcracks in enamel coating.•Composite coating provided more effective corrosion protection than pure enamel coating.</description><subject>Composite enamel coating</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Corrosion protection</subject><subject>Dilatometry</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode polarization</subject><subject>Enamel</subject><subject>Linear polarization</subject><subject>Low temperature</subject><subject>Microcracks</subject><subject>Microstructure</subject><subject>Open circuit voltage</subject><subject>Phase separation</subject><subject>Photoelectrons</subject><subject>Protective coatings</subject><subject>Residual stress</subject><subject>Silicon carbide</subject><subject>Sintering (powder metallurgy)</subject><subject>Spectrum analysis</subject><subject>Steel</subject><subject>Thermal expansion</subject><subject>Vitreous enamel</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray spectroscopy</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUU1LAzEQDaJgrf4FCXjt1iTbbnY9KcUvqHhQzyGbzNqU7qZOsqL_wx9s2ip48xAmzLz3hjePkFPOxpzx4nw5Dj02xus4FkyIMRcll2KPDHgpqyzPJ3KfDJiYyqyspDgkRyEsGWNcVpMB-XpyK2d8R43G2lk4h063sKLGt2sfXAS6EXbda6CNRxoibIeIaZhYa_QRTEzfC_rgTOpG7E3sEUY0LgBbvaLwsdbdFl3DQr87jyOqO5tedNkfKcC0odWdgWNy0OhVgJOfOiQvN9fPs7ts_nh7P7uaZyafsJhpKxvJoBA5l9ZYXdRlbowuwVS2ruVkKlgC8NQRNvmttZGlnsqSm1oLW_B8SM52usnGWw8hqqXvsUsrlSiqvMpFOWUJVexQG3sBoVFrdK3GT8WZ2iSgluo3AbVJQO0SSMTLHRGSh3cHqIJxkPxZh-loynr3n8Q3TkiYEA</recordid><startdate>20220325</startdate><enddate>20220325</enddate><creator>Qian, Hao</creator><creator>Xu, Zhenwen</creator><creator>Chen, Shikun</creator><creator>Liu, Yi</creator><creator>Yan, Dongming</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220325</creationdate><title>Silicon carbide/enamel composite coatings for steel corrosion protection: Microstructure, thermal expansion behavior, and anti-corrosion performance</title><author>Qian, Hao ; Xu, Zhenwen ; Chen, Shikun ; Liu, Yi ; Yan, Dongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ad7f70e62317dcda6b83cca8ec9dbb745207f71ca82d001bac78a5781cba2d613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Composite enamel coating</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Corrosion protection</topic><topic>Dilatometry</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode polarization</topic><topic>Enamel</topic><topic>Linear polarization</topic><topic>Low temperature</topic><topic>Microcracks</topic><topic>Microstructure</topic><topic>Open circuit voltage</topic><topic>Phase separation</topic><topic>Photoelectrons</topic><topic>Protective coatings</topic><topic>Residual stress</topic><topic>Silicon carbide</topic><topic>Sintering (powder metallurgy)</topic><topic>Spectrum analysis</topic><topic>Steel</topic><topic>Thermal expansion</topic><topic>Vitreous enamel</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Hao</creatorcontrib><creatorcontrib>Xu, Zhenwen</creatorcontrib><creatorcontrib>Chen, Shikun</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Yan, Dongming</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Hao</au><au>Xu, Zhenwen</au><au>Chen, Shikun</au><au>Liu, Yi</au><au>Yan, Dongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon carbide/enamel composite coatings for steel corrosion protection: Microstructure, thermal expansion behavior, and anti-corrosion performance</atitle><jtitle>Surface & coatings technology</jtitle><date>2022-03-25</date><risdate>2022</risdate><volume>434</volume><spage>128172</spage><pages>128172-</pages><artnum>128172</artnum><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Vitreous enamel coating has been utilized to protect metallic substrates against corrosion and has proven to be effective. Herein, a new low-temperature sintering silicon carbide/enamel composite coating was produced and compared to pure enamel coating. The microstructure, thermal expansion behavior, and anti-corrosion performance of the prepared coatings were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), dilatometric test, and electrochemical measurements (open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and linear polarization resistance (LPR)). The results indicated that the composite coatings had gradually matched thermal expansion with the steel substrate due to the inclusion of silicon carbide and the raised porosity, which further resulted in the reduction of residual stress and the eradication of surface microcracks. The microstructural alterations increased the anti-corrosion effectiveness of composite coatings, according to the early electrochemical testing (at 24 h). Particularly, the polarization resistance (Rp) of a composite coating containing 7.5 wt% silicon carbide addition was found to be 20 times greater than that of the pure enamel coating. These results imply that the silicon carbide/enamel composite coating outperforms the pure enamel coating and can provide effective corrosion protection for steel.
[Display omitted]
•Silicon carbide/enamel composite coating was developed for steel corrosion protection.•Coating phases were segmented and quantified through grayscale threshold method.•Silicon carbide helped to reduce residual stress and eliminate microcracks in enamel coating.•Composite coating provided more effective corrosion protection than pure enamel coating.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2022.128172</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2022-03, Vol.434, p.128172, Article 128172 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_2693932850 |
source | Elsevier ScienceDirect Journals |
subjects | Composite enamel coating Corrosion Corrosion prevention Corrosion protection Dilatometry Electrochemical impedance spectroscopy Electrode polarization Enamel Linear polarization Low temperature Microcracks Microstructure Open circuit voltage Phase separation Photoelectrons Protective coatings Residual stress Silicon carbide Sintering (powder metallurgy) Spectrum analysis Steel Thermal expansion Vitreous enamel X ray photoelectron spectroscopy X-ray spectroscopy |
title | Silicon carbide/enamel composite coatings for steel corrosion protection: Microstructure, thermal expansion behavior, and anti-corrosion performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20carbide/enamel%20composite%20coatings%20for%20steel%20corrosion%20protection:%20Microstructure,%20thermal%20expansion%20behavior,%20and%20anti-corrosion%20performance&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Qian,%20Hao&rft.date=2022-03-25&rft.volume=434&rft.spage=128172&rft.pages=128172-&rft.artnum=128172&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2022.128172&rft_dat=%3Cproquest_cross%3E2693932850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693932850&rft_id=info:pmid/&rft_els_id=S0257897222000937&rfr_iscdi=true |