Unleashing Insulating Polymer as Charge Transport Cascade Mediator

Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-07, Vol.32 (30), p.n/a
Hauptverfasser: Li, Shen, Mo, Qiao‐Ling, Zhu, Shi‐Cheng, Wei, Zhi‐Quan, Tang, Bo, Liu, Bi‐Jian, Liang, Hao, Xiao, Yang, Wu, Gao, Ge, Xing‐Zu, Xiao, Fang‐Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page
container_title Advanced functional materials
container_volume 32
creator Li, Shen
Mo, Qiao‐Ling
Zhu, Shi‐Cheng
Wei, Zhi‐Quan
Tang, Bo
Liu, Bi‐Jian
Liang, Hao
Xiao, Yang
Wu, Gao
Ge, Xing‐Zu
Xiao, Fang‐Xing
description Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charge transport pathways. Herein, this article demonstrates the unexpected charge modulation property of non‐conjugated insulating polymer assisted by a universal layer‐by‐layer self‐assembly tactic. Oppositely charged poly(dimethyl diallyl ammonium chloride) (PDDA) and Ti3C2 MXene quantum dots (MQDs) are periodically attached to the wide bandgap metal oxides (WMOs) to design multilayered heterostructured photoanodes. The intermediate PDDA layer acts as an efficacious charge relay medium to access directional electron flow from WMOs to Ti3C2 MQDs, while Ti3C2 MQDs serve as the electron extractor. Charge transfer cascade is thus stimulated on account of the simultaneous electron‐trapping capabilities of interim PDDA layer and Ti3C2 MQDs, which synergistically favors the conspicuously boosted charge separation over WMOs, affording the WMOs/(PDDA/MQDs)n photoanodes with considerably enhanced photoelectrochemical (PEC) water oxidation performances. Moreover, PEC performances of such photoanodes can be tuned by interface configuration via assembly number and sequence. This work will provide an insightful perspective to craft a directional charge transfer pathway through insulating polymer for solar energy conversion. The non‐conjugated insulating polymer is utilized as an interfacial charge transport cascade modulator for solar‐powered water oxidation.
doi_str_mv 10.1002/adfm.202110848
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693734887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693734887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2478-57091120c66c3a8d597e79c8c93ab24d28d364bbef030053d4e9c8f42af8f18b3</originalsourceid><addsrcrecordid>eNqFkM1PwkAQxTdGExG9em7iuTj7QXd7xCpKAtEDJN42090tlJQWd9sY_ntLMHj0NC-Z92byfoTcUxhRAPaIttiNGDBKQQl1QQY0oUnMganLs6af1-QmhC0AlZKLAXla1ZXDsCnrdTSrQ1dhe5QfTXXYOR9hiLIN-rWLlh7rsG98G2UYDFoXLZwtsW38LbkqsAru7ncOyWr6ssze4vn76yybzGPDhFTxWEJKKQOTJIajsuNUOpkaZVKOOROWKcsTkeeuAA4w5la4flsIhoUqqMr5kDyc7u5989W50Opt0_m6f6lZkvK-jlKyd41OLuObELwr9N6XO_QHTUEfOekjJ33m1AfSU-C7rNzhH7eePE8Xf9kfBKJrdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693734887</pqid></control><display><type>article</type><title>Unleashing Insulating Polymer as Charge Transport Cascade Mediator</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Shen ; Mo, Qiao‐Ling ; Zhu, Shi‐Cheng ; Wei, Zhi‐Quan ; Tang, Bo ; Liu, Bi‐Jian ; Liang, Hao ; Xiao, Yang ; Wu, Gao ; Ge, Xing‐Zu ; Xiao, Fang‐Xing</creator><creatorcontrib>Li, Shen ; Mo, Qiao‐Ling ; Zhu, Shi‐Cheng ; Wei, Zhi‐Quan ; Tang, Bo ; Liu, Bi‐Jian ; Liang, Hao ; Xiao, Yang ; Wu, Gao ; Ge, Xing‐Zu ; Xiao, Fang‐Xing</creatorcontrib><description>Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charge transport pathways. Herein, this article demonstrates the unexpected charge modulation property of non‐conjugated insulating polymer assisted by a universal layer‐by‐layer self‐assembly tactic. Oppositely charged poly(dimethyl diallyl ammonium chloride) (PDDA) and Ti3C2 MXene quantum dots (MQDs) are periodically attached to the wide bandgap metal oxides (WMOs) to design multilayered heterostructured photoanodes. The intermediate PDDA layer acts as an efficacious charge relay medium to access directional electron flow from WMOs to Ti3C2 MQDs, while Ti3C2 MQDs serve as the electron extractor. Charge transfer cascade is thus stimulated on account of the simultaneous electron‐trapping capabilities of interim PDDA layer and Ti3C2 MQDs, which synergistically favors the conspicuously boosted charge separation over WMOs, affording the WMOs/(PDDA/MQDs)n photoanodes with considerably enhanced photoelectrochemical (PEC) water oxidation performances. Moreover, PEC performances of such photoanodes can be tuned by interface configuration via assembly number and sequence. This work will provide an insightful perspective to craft a directional charge transfer pathway through insulating polymer for solar energy conversion. The non‐conjugated insulating polymer is utilized as an interfacial charge transport cascade modulator for solar‐powered water oxidation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202110848</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Ammonium chloride ; Assembly ; cascade charge transfer ; Charge transfer ; Charge transport ; Electrons ; layer‐by‐layer assemblies ; Materials science ; Metal oxides ; Oxidation ; photoelectrochemical water oxidation ; poly(dimethyl diallyl ammonium chloride) interim layer ; Polymers ; Quantum dots ; Solar energy conversion ; Ti3C2 MXene quantum dots</subject><ispartof>Advanced functional materials, 2022-07, Vol.32 (30), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2478-57091120c66c3a8d597e79c8c93ab24d28d364bbef030053d4e9c8f42af8f18b3</citedby><cites>FETCH-LOGICAL-c2478-57091120c66c3a8d597e79c8c93ab24d28d364bbef030053d4e9c8f42af8f18b3</cites><orcidid>0000-0001-5673-5362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202110848$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202110848$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Shen</creatorcontrib><creatorcontrib>Mo, Qiao‐Ling</creatorcontrib><creatorcontrib>Zhu, Shi‐Cheng</creatorcontrib><creatorcontrib>Wei, Zhi‐Quan</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Liu, Bi‐Jian</creatorcontrib><creatorcontrib>Liang, Hao</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Wu, Gao</creatorcontrib><creatorcontrib>Ge, Xing‐Zu</creatorcontrib><creatorcontrib>Xiao, Fang‐Xing</creatorcontrib><title>Unleashing Insulating Polymer as Charge Transport Cascade Mediator</title><title>Advanced functional materials</title><description>Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charge transport pathways. Herein, this article demonstrates the unexpected charge modulation property of non‐conjugated insulating polymer assisted by a universal layer‐by‐layer self‐assembly tactic. Oppositely charged poly(dimethyl diallyl ammonium chloride) (PDDA) and Ti3C2 MXene quantum dots (MQDs) are periodically attached to the wide bandgap metal oxides (WMOs) to design multilayered heterostructured photoanodes. The intermediate PDDA layer acts as an efficacious charge relay medium to access directional electron flow from WMOs to Ti3C2 MQDs, while Ti3C2 MQDs serve as the electron extractor. Charge transfer cascade is thus stimulated on account of the simultaneous electron‐trapping capabilities of interim PDDA layer and Ti3C2 MQDs, which synergistically favors the conspicuously boosted charge separation over WMOs, affording the WMOs/(PDDA/MQDs)n photoanodes with considerably enhanced photoelectrochemical (PEC) water oxidation performances. Moreover, PEC performances of such photoanodes can be tuned by interface configuration via assembly number and sequence. This work will provide an insightful perspective to craft a directional charge transfer pathway through insulating polymer for solar energy conversion. The non‐conjugated insulating polymer is utilized as an interfacial charge transport cascade modulator for solar‐powered water oxidation.</description><subject>Ammonium chloride</subject><subject>Assembly</subject><subject>cascade charge transfer</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Electrons</subject><subject>layer‐by‐layer assemblies</subject><subject>Materials science</subject><subject>Metal oxides</subject><subject>Oxidation</subject><subject>photoelectrochemical water oxidation</subject><subject>poly(dimethyl diallyl ammonium chloride) interim layer</subject><subject>Polymers</subject><subject>Quantum dots</subject><subject>Solar energy conversion</subject><subject>Ti3C2 MXene quantum dots</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PwkAQxTdGExG9em7iuTj7QXd7xCpKAtEDJN42090tlJQWd9sY_ntLMHj0NC-Z92byfoTcUxhRAPaIttiNGDBKQQl1QQY0oUnMganLs6af1-QmhC0AlZKLAXla1ZXDsCnrdTSrQ1dhe5QfTXXYOR9hiLIN-rWLlh7rsG98G2UYDFoXLZwtsW38LbkqsAru7ncOyWr6ssze4vn76yybzGPDhFTxWEJKKQOTJIajsuNUOpkaZVKOOROWKcsTkeeuAA4w5la4flsIhoUqqMr5kDyc7u5989W50Opt0_m6f6lZkvK-jlKyd41OLuObELwr9N6XO_QHTUEfOekjJ33m1AfSU-C7rNzhH7eePE8Xf9kfBKJrdQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Li, Shen</creator><creator>Mo, Qiao‐Ling</creator><creator>Zhu, Shi‐Cheng</creator><creator>Wei, Zhi‐Quan</creator><creator>Tang, Bo</creator><creator>Liu, Bi‐Jian</creator><creator>Liang, Hao</creator><creator>Xiao, Yang</creator><creator>Wu, Gao</creator><creator>Ge, Xing‐Zu</creator><creator>Xiao, Fang‐Xing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5673-5362</orcidid></search><sort><creationdate>20220701</creationdate><title>Unleashing Insulating Polymer as Charge Transport Cascade Mediator</title><author>Li, Shen ; Mo, Qiao‐Ling ; Zhu, Shi‐Cheng ; Wei, Zhi‐Quan ; Tang, Bo ; Liu, Bi‐Jian ; Liang, Hao ; Xiao, Yang ; Wu, Gao ; Ge, Xing‐Zu ; Xiao, Fang‐Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2478-57091120c66c3a8d597e79c8c93ab24d28d364bbef030053d4e9c8f42af8f18b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonium chloride</topic><topic>Assembly</topic><topic>cascade charge transfer</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Electrons</topic><topic>layer‐by‐layer assemblies</topic><topic>Materials science</topic><topic>Metal oxides</topic><topic>Oxidation</topic><topic>photoelectrochemical water oxidation</topic><topic>poly(dimethyl diallyl ammonium chloride) interim layer</topic><topic>Polymers</topic><topic>Quantum dots</topic><topic>Solar energy conversion</topic><topic>Ti3C2 MXene quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shen</creatorcontrib><creatorcontrib>Mo, Qiao‐Ling</creatorcontrib><creatorcontrib>Zhu, Shi‐Cheng</creatorcontrib><creatorcontrib>Wei, Zhi‐Quan</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Liu, Bi‐Jian</creatorcontrib><creatorcontrib>Liang, Hao</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Wu, Gao</creatorcontrib><creatorcontrib>Ge, Xing‐Zu</creatorcontrib><creatorcontrib>Xiao, Fang‐Xing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shen</au><au>Mo, Qiao‐Ling</au><au>Zhu, Shi‐Cheng</au><au>Wei, Zhi‐Quan</au><au>Tang, Bo</au><au>Liu, Bi‐Jian</au><au>Liang, Hao</au><au>Xiao, Yang</au><au>Wu, Gao</au><au>Ge, Xing‐Zu</au><au>Xiao, Fang‐Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unleashing Insulating Polymer as Charge Transport Cascade Mediator</atitle><jtitle>Advanced functional materials</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>32</volume><issue>30</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charge transport pathways. Herein, this article demonstrates the unexpected charge modulation property of non‐conjugated insulating polymer assisted by a universal layer‐by‐layer self‐assembly tactic. Oppositely charged poly(dimethyl diallyl ammonium chloride) (PDDA) and Ti3C2 MXene quantum dots (MQDs) are periodically attached to the wide bandgap metal oxides (WMOs) to design multilayered heterostructured photoanodes. The intermediate PDDA layer acts as an efficacious charge relay medium to access directional electron flow from WMOs to Ti3C2 MQDs, while Ti3C2 MQDs serve as the electron extractor. Charge transfer cascade is thus stimulated on account of the simultaneous electron‐trapping capabilities of interim PDDA layer and Ti3C2 MQDs, which synergistically favors the conspicuously boosted charge separation over WMOs, affording the WMOs/(PDDA/MQDs)n photoanodes with considerably enhanced photoelectrochemical (PEC) water oxidation performances. Moreover, PEC performances of such photoanodes can be tuned by interface configuration via assembly number and sequence. This work will provide an insightful perspective to craft a directional charge transfer pathway through insulating polymer for solar energy conversion. The non‐conjugated insulating polymer is utilized as an interfacial charge transport cascade modulator for solar‐powered water oxidation.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202110848</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5673-5362</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-07, Vol.32 (30), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2693734887
source Wiley Online Library Journals Frontfile Complete
subjects Ammonium chloride
Assembly
cascade charge transfer
Charge transfer
Charge transport
Electrons
layer‐by‐layer assemblies
Materials science
Metal oxides
Oxidation
photoelectrochemical water oxidation
poly(dimethyl diallyl ammonium chloride) interim layer
Polymers
Quantum dots
Solar energy conversion
Ti3C2 MXene quantum dots
title Unleashing Insulating Polymer as Charge Transport Cascade Mediator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unleashing%20Insulating%20Polymer%20as%20Charge%20Transport%20Cascade%20Mediator&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Shen&rft.date=2022-07-01&rft.volume=32&rft.issue=30&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202110848&rft_dat=%3Cproquest_cross%3E2693734887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693734887&rft_id=info:pmid/&rfr_iscdi=true