Unleashing Insulating Polymer as Charge Transport Cascade Mediator
Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charg...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-07, Vol.32 (30), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Li, Shen Mo, Qiao‐Ling Zhu, Shi‐Cheng Wei, Zhi‐Quan Tang, Bo Liu, Bi‐Jian Liang, Hao Xiao, Yang Wu, Gao Ge, Xing‐Zu Xiao, Fang‐Xing |
description | Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charge transport pathways. Herein, this article demonstrates the unexpected charge modulation property of non‐conjugated insulating polymer assisted by a universal layer‐by‐layer self‐assembly tactic. Oppositely charged poly(dimethyl diallyl ammonium chloride) (PDDA) and Ti3C2 MXene quantum dots (MQDs) are periodically attached to the wide bandgap metal oxides (WMOs) to design multilayered heterostructured photoanodes. The intermediate PDDA layer acts as an efficacious charge relay medium to access directional electron flow from WMOs to Ti3C2 MQDs, while Ti3C2 MQDs serve as the electron extractor. Charge transfer cascade is thus stimulated on account of the simultaneous electron‐trapping capabilities of interim PDDA layer and Ti3C2 MQDs, which synergistically favors the conspicuously boosted charge separation over WMOs, affording the WMOs/(PDDA/MQDs)n photoanodes with considerably enhanced photoelectrochemical (PEC) water oxidation performances. Moreover, PEC performances of such photoanodes can be tuned by interface configuration via assembly number and sequence. This work will provide an insightful perspective to craft a directional charge transfer pathway through insulating polymer for solar energy conversion.
The non‐conjugated insulating polymer is utilized as an interfacial charge transport cascade modulator for solar‐powered water oxidation. |
doi_str_mv | 10.1002/adfm.202110848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693734887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693734887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2478-57091120c66c3a8d597e79c8c93ab24d28d364bbef030053d4e9c8f42af8f18b3</originalsourceid><addsrcrecordid>eNqFkM1PwkAQxTdGExG9em7iuTj7QXd7xCpKAtEDJN42090tlJQWd9sY_ntLMHj0NC-Z92byfoTcUxhRAPaIttiNGDBKQQl1QQY0oUnMganLs6af1-QmhC0AlZKLAXla1ZXDsCnrdTSrQ1dhe5QfTXXYOR9hiLIN-rWLlh7rsG98G2UYDFoXLZwtsW38LbkqsAru7ncOyWr6ssze4vn76yybzGPDhFTxWEJKKQOTJIajsuNUOpkaZVKOOROWKcsTkeeuAA4w5la4flsIhoUqqMr5kDyc7u5989W50Opt0_m6f6lZkvK-jlKyd41OLuObELwr9N6XO_QHTUEfOekjJ33m1AfSU-C7rNzhH7eePE8Xf9kfBKJrdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693734887</pqid></control><display><type>article</type><title>Unleashing Insulating Polymer as Charge Transport Cascade Mediator</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Shen ; Mo, Qiao‐Ling ; Zhu, Shi‐Cheng ; Wei, Zhi‐Quan ; Tang, Bo ; Liu, Bi‐Jian ; Liang, Hao ; Xiao, Yang ; Wu, Gao ; Ge, Xing‐Zu ; Xiao, Fang‐Xing</creator><creatorcontrib>Li, Shen ; Mo, Qiao‐Ling ; Zhu, Shi‐Cheng ; Wei, Zhi‐Quan ; Tang, Bo ; Liu, Bi‐Jian ; Liang, Hao ; Xiao, Yang ; Wu, Gao ; Ge, Xing‐Zu ; Xiao, Fang‐Xing</creatorcontrib><description>Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charge transport pathways. Herein, this article demonstrates the unexpected charge modulation property of non‐conjugated insulating polymer assisted by a universal layer‐by‐layer self‐assembly tactic. Oppositely charged poly(dimethyl diallyl ammonium chloride) (PDDA) and Ti3C2 MXene quantum dots (MQDs) are periodically attached to the wide bandgap metal oxides (WMOs) to design multilayered heterostructured photoanodes. The intermediate PDDA layer acts as an efficacious charge relay medium to access directional electron flow from WMOs to Ti3C2 MQDs, while Ti3C2 MQDs serve as the electron extractor. Charge transfer cascade is thus stimulated on account of the simultaneous electron‐trapping capabilities of interim PDDA layer and Ti3C2 MQDs, which synergistically favors the conspicuously boosted charge separation over WMOs, affording the WMOs/(PDDA/MQDs)n photoanodes with considerably enhanced photoelectrochemical (PEC) water oxidation performances. Moreover, PEC performances of such photoanodes can be tuned by interface configuration via assembly number and sequence. This work will provide an insightful perspective to craft a directional charge transfer pathway through insulating polymer for solar energy conversion.
The non‐conjugated insulating polymer is utilized as an interfacial charge transport cascade modulator for solar‐powered water oxidation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202110848</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Ammonium chloride ; Assembly ; cascade charge transfer ; Charge transfer ; Charge transport ; Electrons ; layer‐by‐layer assemblies ; Materials science ; Metal oxides ; Oxidation ; photoelectrochemical water oxidation ; poly(dimethyl diallyl ammonium chloride) interim layer ; Polymers ; Quantum dots ; Solar energy conversion ; Ti3C2 MXene quantum dots</subject><ispartof>Advanced functional materials, 2022-07, Vol.32 (30), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2478-57091120c66c3a8d597e79c8c93ab24d28d364bbef030053d4e9c8f42af8f18b3</citedby><cites>FETCH-LOGICAL-c2478-57091120c66c3a8d597e79c8c93ab24d28d364bbef030053d4e9c8f42af8f18b3</cites><orcidid>0000-0001-5673-5362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202110848$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202110848$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Shen</creatorcontrib><creatorcontrib>Mo, Qiao‐Ling</creatorcontrib><creatorcontrib>Zhu, Shi‐Cheng</creatorcontrib><creatorcontrib>Wei, Zhi‐Quan</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Liu, Bi‐Jian</creatorcontrib><creatorcontrib>Liang, Hao</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Wu, Gao</creatorcontrib><creatorcontrib>Ge, Xing‐Zu</creatorcontrib><creatorcontrib>Xiao, Fang‐Xing</creatorcontrib><title>Unleashing Insulating Polymer as Charge Transport Cascade Mediator</title><title>Advanced functional materials</title><description>Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charge transport pathways. Herein, this article demonstrates the unexpected charge modulation property of non‐conjugated insulating polymer assisted by a universal layer‐by‐layer self‐assembly tactic. Oppositely charged poly(dimethyl diallyl ammonium chloride) (PDDA) and Ti3C2 MXene quantum dots (MQDs) are periodically attached to the wide bandgap metal oxides (WMOs) to design multilayered heterostructured photoanodes. The intermediate PDDA layer acts as an efficacious charge relay medium to access directional electron flow from WMOs to Ti3C2 MQDs, while Ti3C2 MQDs serve as the electron extractor. Charge transfer cascade is thus stimulated on account of the simultaneous electron‐trapping capabilities of interim PDDA layer and Ti3C2 MQDs, which synergistically favors the conspicuously boosted charge separation over WMOs, affording the WMOs/(PDDA/MQDs)n photoanodes with considerably enhanced photoelectrochemical (PEC) water oxidation performances. Moreover, PEC performances of such photoanodes can be tuned by interface configuration via assembly number and sequence. This work will provide an insightful perspective to craft a directional charge transfer pathway through insulating polymer for solar energy conversion.
The non‐conjugated insulating polymer is utilized as an interfacial charge transport cascade modulator for solar‐powered water oxidation.</description><subject>Ammonium chloride</subject><subject>Assembly</subject><subject>cascade charge transfer</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Electrons</subject><subject>layer‐by‐layer assemblies</subject><subject>Materials science</subject><subject>Metal oxides</subject><subject>Oxidation</subject><subject>photoelectrochemical water oxidation</subject><subject>poly(dimethyl diallyl ammonium chloride) interim layer</subject><subject>Polymers</subject><subject>Quantum dots</subject><subject>Solar energy conversion</subject><subject>Ti3C2 MXene quantum dots</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PwkAQxTdGExG9em7iuTj7QXd7xCpKAtEDJN42090tlJQWd9sY_ntLMHj0NC-Z92byfoTcUxhRAPaIttiNGDBKQQl1QQY0oUnMganLs6af1-QmhC0AlZKLAXla1ZXDsCnrdTSrQ1dhe5QfTXXYOR9hiLIN-rWLlh7rsG98G2UYDFoXLZwtsW38LbkqsAru7ncOyWr6ssze4vn76yybzGPDhFTxWEJKKQOTJIajsuNUOpkaZVKOOROWKcsTkeeuAA4w5la4flsIhoUqqMr5kDyc7u5989W50Opt0_m6f6lZkvK-jlKyd41OLuObELwr9N6XO_QHTUEfOekjJ33m1AfSU-C7rNzhH7eePE8Xf9kfBKJrdQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Li, Shen</creator><creator>Mo, Qiao‐Ling</creator><creator>Zhu, Shi‐Cheng</creator><creator>Wei, Zhi‐Quan</creator><creator>Tang, Bo</creator><creator>Liu, Bi‐Jian</creator><creator>Liang, Hao</creator><creator>Xiao, Yang</creator><creator>Wu, Gao</creator><creator>Ge, Xing‐Zu</creator><creator>Xiao, Fang‐Xing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5673-5362</orcidid></search><sort><creationdate>20220701</creationdate><title>Unleashing Insulating Polymer as Charge Transport Cascade Mediator</title><author>Li, Shen ; Mo, Qiao‐Ling ; Zhu, Shi‐Cheng ; Wei, Zhi‐Quan ; Tang, Bo ; Liu, Bi‐Jian ; Liang, Hao ; Xiao, Yang ; Wu, Gao ; Ge, Xing‐Zu ; Xiao, Fang‐Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2478-57091120c66c3a8d597e79c8c93ab24d28d364bbef030053d4e9c8f42af8f18b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonium chloride</topic><topic>Assembly</topic><topic>cascade charge transfer</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Electrons</topic><topic>layer‐by‐layer assemblies</topic><topic>Materials science</topic><topic>Metal oxides</topic><topic>Oxidation</topic><topic>photoelectrochemical water oxidation</topic><topic>poly(dimethyl diallyl ammonium chloride) interim layer</topic><topic>Polymers</topic><topic>Quantum dots</topic><topic>Solar energy conversion</topic><topic>Ti3C2 MXene quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shen</creatorcontrib><creatorcontrib>Mo, Qiao‐Ling</creatorcontrib><creatorcontrib>Zhu, Shi‐Cheng</creatorcontrib><creatorcontrib>Wei, Zhi‐Quan</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Liu, Bi‐Jian</creatorcontrib><creatorcontrib>Liang, Hao</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Wu, Gao</creatorcontrib><creatorcontrib>Ge, Xing‐Zu</creatorcontrib><creatorcontrib>Xiao, Fang‐Xing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shen</au><au>Mo, Qiao‐Ling</au><au>Zhu, Shi‐Cheng</au><au>Wei, Zhi‐Quan</au><au>Tang, Bo</au><au>Liu, Bi‐Jian</au><au>Liang, Hao</au><au>Xiao, Yang</au><au>Wu, Gao</au><au>Ge, Xing‐Zu</au><au>Xiao, Fang‐Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unleashing Insulating Polymer as Charge Transport Cascade Mediator</atitle><jtitle>Advanced functional materials</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>32</volume><issue>30</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Crafting spatially controllable charge transfer channels at the nanoscale level remains an enduring challenge in solar‐to‐chemical conversion technology. Despite the advancements, it still suffers from sluggish interfacial charge transport kinetics and scarcity of strategies to finely modulate charge transport pathways. Herein, this article demonstrates the unexpected charge modulation property of non‐conjugated insulating polymer assisted by a universal layer‐by‐layer self‐assembly tactic. Oppositely charged poly(dimethyl diallyl ammonium chloride) (PDDA) and Ti3C2 MXene quantum dots (MQDs) are periodically attached to the wide bandgap metal oxides (WMOs) to design multilayered heterostructured photoanodes. The intermediate PDDA layer acts as an efficacious charge relay medium to access directional electron flow from WMOs to Ti3C2 MQDs, while Ti3C2 MQDs serve as the electron extractor. Charge transfer cascade is thus stimulated on account of the simultaneous electron‐trapping capabilities of interim PDDA layer and Ti3C2 MQDs, which synergistically favors the conspicuously boosted charge separation over WMOs, affording the WMOs/(PDDA/MQDs)n photoanodes with considerably enhanced photoelectrochemical (PEC) water oxidation performances. Moreover, PEC performances of such photoanodes can be tuned by interface configuration via assembly number and sequence. This work will provide an insightful perspective to craft a directional charge transfer pathway through insulating polymer for solar energy conversion.
The non‐conjugated insulating polymer is utilized as an interfacial charge transport cascade modulator for solar‐powered water oxidation.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202110848</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5673-5362</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-07, Vol.32 (30), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2693734887 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ammonium chloride Assembly cascade charge transfer Charge transfer Charge transport Electrons layer‐by‐layer assemblies Materials science Metal oxides Oxidation photoelectrochemical water oxidation poly(dimethyl diallyl ammonium chloride) interim layer Polymers Quantum dots Solar energy conversion Ti3C2 MXene quantum dots |
title | Unleashing Insulating Polymer as Charge Transport Cascade Mediator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unleashing%20Insulating%20Polymer%20as%20Charge%20Transport%20Cascade%20Mediator&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Shen&rft.date=2022-07-01&rft.volume=32&rft.issue=30&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202110848&rft_dat=%3Cproquest_cross%3E2693734887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693734887&rft_id=info:pmid/&rfr_iscdi=true |