Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO2 Reduction in Water Using ZnSe Quantum Dots
Colloidal quantum dots (QDs) consisting of precious‐metal‐free elements show attractive potentials towards solar‐driven CO2 reduction. However, the inhibition of hydrogen (H2) production in aqueous solution remains a challenge. Here, we describe the first example of a carbon–carbon (C−C) coupling re...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2022-08, Vol.134 (31), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 134 |
creator | Xin, Zhi‐Kun Huang, Mao‐Yong Wang, Yang Gao, Yu‐Ji Guo, Qing Li, Xu‐Bing Tung, Chen‐Ho Wu, Li‐Zhu |
description | Colloidal quantum dots (QDs) consisting of precious‐metal‐free elements show attractive potentials towards solar‐driven CO2 reduction. However, the inhibition of hydrogen (H2) production in aqueous solution remains a challenge. Here, we describe the first example of a carbon–carbon (C−C) coupling reaction to block the competing H2 evolution in photocatalytic CO2 reduction in water. In a specific system taking ZnSe QDs as photocatalysts, the introduction of furfural can significantly suppress H2 evolution leading to CO evolution with a rate of ≈5.3 mmol g−1 h−1 and a turnover number (TON) of >7500 under 24 h visible light. Meanwhile, furfural is upgraded to the self‐coupling product with a yield of 99.8 % based on the consumption of furfural. Mechanistic insights show that the reductive furfural coupling reaction occurs on surface Zn‐sites to consume electrons and protons originally used for H2 production, while the CO formation pathway at surface anion vacancies from CO2 remains.
Reductive carbon–carbon coupling was used to block H2 evolution in CO2 photoreduction in water. Furfural, one of the biomass platform molecules, adsorbs on Zn‐sites consuming electrons and protons originally used for H2 production, but the CO formation pathway at surface anion vacancies remains. Therefore, CO was evolved with a CO/H2 ratio of 265 : 1 in the gas phase and furfural was upgraded to value‐added hydrofuroin. |
doi_str_mv | 10.1002/ange.202207222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2693699575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693699575</sourcerecordid><originalsourceid>FETCH-LOGICAL-p782-3eb7fd1e44e922e9e48c52135c01d949d1d0e2af87db3ae759467d5d97dfbd63</originalsourceid><addsrcrecordid>eNo9kM9Kw0AQxhdRsFavnhc8p-5O_mz2WGKtQrXaKoKXZZOd1JQ0qclGyc138A19EhNaeprfMN98w3yEXHI24ozBtS5WOAIGwAQAHJEB94E7rvDFMRkw5nlOCJ48JWd1vWaMBSDkgLQLNE1isy-kka7isvj7-d0Bjcpmm2fFinb8gFbndJlZrOkCV02ue3r6KG2Z6G7U2iyh0Rzo3q5byQr61qkq-lr3Ju_FEulzowvbbOhNaetzcpLqvMaLfR2S5e3kJbpzZvPpfTSeOVsRguNiLFLD0fNQAqBEL0y6t1w_YdxITxpuGIJOQ2FiV6PwpRcI4xspTBqbwB2Sq53rtio_G6ytWpdNVXQHFQTSDaT0hd-p5E71neXYqm2VbXTVKs5Un6zqk1WHZNX4cTo5dO4_pL5xVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693699575</pqid></control><display><type>article</type><title>Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO2 Reduction in Water Using ZnSe Quantum Dots</title><source>Wiley Online Library All Journals</source><creator>Xin, Zhi‐Kun ; Huang, Mao‐Yong ; Wang, Yang ; Gao, Yu‐Ji ; Guo, Qing ; Li, Xu‐Bing ; Tung, Chen‐Ho ; Wu, Li‐Zhu</creator><creatorcontrib>Xin, Zhi‐Kun ; Huang, Mao‐Yong ; Wang, Yang ; Gao, Yu‐Ji ; Guo, Qing ; Li, Xu‐Bing ; Tung, Chen‐Ho ; Wu, Li‐Zhu</creatorcontrib><description>Colloidal quantum dots (QDs) consisting of precious‐metal‐free elements show attractive potentials towards solar‐driven CO2 reduction. However, the inhibition of hydrogen (H2) production in aqueous solution remains a challenge. Here, we describe the first example of a carbon–carbon (C−C) coupling reaction to block the competing H2 evolution in photocatalytic CO2 reduction in water. In a specific system taking ZnSe QDs as photocatalysts, the introduction of furfural can significantly suppress H2 evolution leading to CO evolution with a rate of ≈5.3 mmol g−1 h−1 and a turnover number (TON) of >7500 under 24 h visible light. Meanwhile, furfural is upgraded to the self‐coupling product with a yield of 99.8 % based on the consumption of furfural. Mechanistic insights show that the reductive furfural coupling reaction occurs on surface Zn‐sites to consume electrons and protons originally used for H2 production, while the CO formation pathway at surface anion vacancies from CO2 remains.
Reductive carbon–carbon coupling was used to block H2 evolution in CO2 photoreduction in water. Furfural, one of the biomass platform molecules, adsorbs on Zn‐sites consuming electrons and protons originally used for H2 production, but the CO formation pathway at surface anion vacancies remains. Therefore, CO was evolved with a CO/H2 ratio of 265 : 1 in the gas phase and furfural was upgraded to value‐added hydrofuroin.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202207222</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aqueous solutions ; Artificial Photosynthesis ; Carbon dioxide ; Carbon Dioxide Reduction ; Chemistry ; Coupling ; Evolution ; Furfural ; Hydrogen evolution ; Hydrogen production ; Photocatalysis ; Protons ; Quantum dots ; Reaction Kinetics ; ZnSe Quantum Dots</subject><ispartof>Angewandte Chemie, 2022-08, Vol.134 (31), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5561-9922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202207222$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202207222$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Xin, Zhi‐Kun</creatorcontrib><creatorcontrib>Huang, Mao‐Yong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Gao, Yu‐Ji</creatorcontrib><creatorcontrib>Guo, Qing</creatorcontrib><creatorcontrib>Li, Xu‐Bing</creatorcontrib><creatorcontrib>Tung, Chen‐Ho</creatorcontrib><creatorcontrib>Wu, Li‐Zhu</creatorcontrib><title>Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO2 Reduction in Water Using ZnSe Quantum Dots</title><title>Angewandte Chemie</title><description>Colloidal quantum dots (QDs) consisting of precious‐metal‐free elements show attractive potentials towards solar‐driven CO2 reduction. However, the inhibition of hydrogen (H2) production in aqueous solution remains a challenge. Here, we describe the first example of a carbon–carbon (C−C) coupling reaction to block the competing H2 evolution in photocatalytic CO2 reduction in water. In a specific system taking ZnSe QDs as photocatalysts, the introduction of furfural can significantly suppress H2 evolution leading to CO evolution with a rate of ≈5.3 mmol g−1 h−1 and a turnover number (TON) of >7500 under 24 h visible light. Meanwhile, furfural is upgraded to the self‐coupling product with a yield of 99.8 % based on the consumption of furfural. Mechanistic insights show that the reductive furfural coupling reaction occurs on surface Zn‐sites to consume electrons and protons originally used for H2 production, while the CO formation pathway at surface anion vacancies from CO2 remains.
Reductive carbon–carbon coupling was used to block H2 evolution in CO2 photoreduction in water. Furfural, one of the biomass platform molecules, adsorbs on Zn‐sites consuming electrons and protons originally used for H2 production, but the CO formation pathway at surface anion vacancies remains. Therefore, CO was evolved with a CO/H2 ratio of 265 : 1 in the gas phase and furfural was upgraded to value‐added hydrofuroin.</description><subject>Aqueous solutions</subject><subject>Artificial Photosynthesis</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide Reduction</subject><subject>Chemistry</subject><subject>Coupling</subject><subject>Evolution</subject><subject>Furfural</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Photocatalysis</subject><subject>Protons</subject><subject>Quantum dots</subject><subject>Reaction Kinetics</subject><subject>ZnSe Quantum Dots</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AQxhdRsFavnhc8p-5O_mz2WGKtQrXaKoKXZZOd1JQ0qclGyc138A19EhNaeprfMN98w3yEXHI24ozBtS5WOAIGwAQAHJEB94E7rvDFMRkw5nlOCJ48JWd1vWaMBSDkgLQLNE1isy-kka7isvj7-d0Bjcpmm2fFinb8gFbndJlZrOkCV02ue3r6KG2Z6G7U2iyh0Rzo3q5byQr61qkq-lr3Ju_FEulzowvbbOhNaetzcpLqvMaLfR2S5e3kJbpzZvPpfTSeOVsRguNiLFLD0fNQAqBEL0y6t1w_YdxITxpuGIJOQ2FiV6PwpRcI4xspTBqbwB2Sq53rtio_G6ytWpdNVXQHFQTSDaT0hd-p5E71neXYqm2VbXTVKs5Un6zqk1WHZNX4cTo5dO4_pL5xVw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xin, Zhi‐Kun</creator><creator>Huang, Mao‐Yong</creator><creator>Wang, Yang</creator><creator>Gao, Yu‐Ji</creator><creator>Guo, Qing</creator><creator>Li, Xu‐Bing</creator><creator>Tung, Chen‐Ho</creator><creator>Wu, Li‐Zhu</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5561-9922</orcidid></search><sort><creationdate>20220801</creationdate><title>Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO2 Reduction in Water Using ZnSe Quantum Dots</title><author>Xin, Zhi‐Kun ; Huang, Mao‐Yong ; Wang, Yang ; Gao, Yu‐Ji ; Guo, Qing ; Li, Xu‐Bing ; Tung, Chen‐Ho ; Wu, Li‐Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p782-3eb7fd1e44e922e9e48c52135c01d949d1d0e2af87db3ae759467d5d97dfbd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous solutions</topic><topic>Artificial Photosynthesis</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide Reduction</topic><topic>Chemistry</topic><topic>Coupling</topic><topic>Evolution</topic><topic>Furfural</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Photocatalysis</topic><topic>Protons</topic><topic>Quantum dots</topic><topic>Reaction Kinetics</topic><topic>ZnSe Quantum Dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Zhi‐Kun</creatorcontrib><creatorcontrib>Huang, Mao‐Yong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Gao, Yu‐Ji</creatorcontrib><creatorcontrib>Guo, Qing</creatorcontrib><creatorcontrib>Li, Xu‐Bing</creatorcontrib><creatorcontrib>Tung, Chen‐Ho</creatorcontrib><creatorcontrib>Wu, Li‐Zhu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Zhi‐Kun</au><au>Huang, Mao‐Yong</au><au>Wang, Yang</au><au>Gao, Yu‐Ji</au><au>Guo, Qing</au><au>Li, Xu‐Bing</au><au>Tung, Chen‐Ho</au><au>Wu, Li‐Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO2 Reduction in Water Using ZnSe Quantum Dots</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>134</volume><issue>31</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Colloidal quantum dots (QDs) consisting of precious‐metal‐free elements show attractive potentials towards solar‐driven CO2 reduction. However, the inhibition of hydrogen (H2) production in aqueous solution remains a challenge. Here, we describe the first example of a carbon–carbon (C−C) coupling reaction to block the competing H2 evolution in photocatalytic CO2 reduction in water. In a specific system taking ZnSe QDs as photocatalysts, the introduction of furfural can significantly suppress H2 evolution leading to CO evolution with a rate of ≈5.3 mmol g−1 h−1 and a turnover number (TON) of >7500 under 24 h visible light. Meanwhile, furfural is upgraded to the self‐coupling product with a yield of 99.8 % based on the consumption of furfural. Mechanistic insights show that the reductive furfural coupling reaction occurs on surface Zn‐sites to consume electrons and protons originally used for H2 production, while the CO formation pathway at surface anion vacancies from CO2 remains.
Reductive carbon–carbon coupling was used to block H2 evolution in CO2 photoreduction in water. Furfural, one of the biomass platform molecules, adsorbs on Zn‐sites consuming electrons and protons originally used for H2 production, but the CO formation pathway at surface anion vacancies remains. Therefore, CO was evolved with a CO/H2 ratio of 265 : 1 in the gas phase and furfural was upgraded to value‐added hydrofuroin.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202207222</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5561-9922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2022-08, Vol.134 (31), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2693699575 |
source | Wiley Online Library All Journals |
subjects | Aqueous solutions Artificial Photosynthesis Carbon dioxide Carbon Dioxide Reduction Chemistry Coupling Evolution Furfural Hydrogen evolution Hydrogen production Photocatalysis Protons Quantum dots Reaction Kinetics ZnSe Quantum Dots |
title | Reductive Carbon–Carbon Coupling on Metal Sites Regulates Photocatalytic CO2 Reduction in Water Using ZnSe Quantum Dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reductive%20Carbon%E2%80%93Carbon%20Coupling%20on%20Metal%20Sites%20Regulates%20Photocatalytic%20CO2%20Reduction%20in%20Water%20Using%20ZnSe%20Quantum%20Dots&rft.jtitle=Angewandte%20Chemie&rft.au=Xin,%20Zhi%E2%80%90Kun&rft.date=2022-08-01&rft.volume=134&rft.issue=31&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202207222&rft_dat=%3Cproquest_wiley%3E2693699575%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693699575&rft_id=info:pmid/&rfr_iscdi=true |