ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction

In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-08, Vol.34 (16), p.13485-13498
Hauptverfasser: Xue, Zhenfeng, Chen, Liang, Liu, Zhitao, Liu, Yong, Mao, Weijie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13498
container_issue 16
container_start_page 13485
container_title Neural computing & applications
container_volume 34
creator Xue, Zhenfeng
Chen, Liang
Liu, Zhitao
Liu, Yong
Mao, Weijie
description In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a virtual-realistic fused dataset, short for ViRFD. The R-part is composed of a realistic dataset from our previous work, and the V-part is simulated by a learning-based method proposed in this paper. Unlike traditional manual methods, we use a virtual engine (Unity) to simulate datasets, since the corresponding ground-truth labels can be automatically extracted by the engine. Specifically, we propose a novel synthetic dataset simulator, named RockSegX . It contains abundant virtual 3D resources to ensure the diversity and fidelity of generated datasets. The main feature of RockSegX lies in its content flexibility, i.e., we are able to control the content of dataset by adjusting the values of several attributes. These attributes are carefully designed for reducing the content difference between V-part and R-part datasets. And we employ a learning-based method to automatically adjust the attributes so that the V-part dataset has the smallest content difference with the R-part. Experimental results show the effectiveness of our method in improving the quality of simulated dataset, and it further boosts the test accuracy for real-world segmentation.
doi_str_mv 10.1007/s00521-022-07179-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693546648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693546648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1d1f4ba8f6a496c6bb9bf61f40a14d90ef6a292e2d3aa11c770383049ae1ac8e3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA6-jJpWnjTkdHBUXQ0W1I01Qyju2YpML49EYruHN14L9x-BA6pHBMAcqTCFAwSoAxAiUtFRFbaEIF54RDUW2jCSiRbSn4LtqLcQkAQlbFBD0--4f5xSk2-MOHNJgVCc6sfEze4naIrsGNSSa6hNs-4NDbVxz9p8OmM6tN9BH7Di_O77Dtu5jCYJPvu32005pVdAe_d4qe5peL2TW5vb-6mZ3dEsupSoQ2tBW1qVpphJJW1rWqW5k1MFQ0Clw2mGKONdwYSm1ZAq84CGUcNbZyfIqOxt116N8HF5Ne9kPIj0XNpOKFkFJUOcXGlA19jMG1eh38mwkbTUF_w9MjPJ3h6R94WuQSH0sxh7sXF_6m_2l9ATbzcec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693546648</pqid></control><display><type>article</type><title>ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xue, Zhenfeng ; Chen, Liang ; Liu, Zhitao ; Liu, Yong ; Mao, Weijie</creator><creatorcontrib>Xue, Zhenfeng ; Chen, Liang ; Liu, Zhitao ; Liu, Yong ; Mao, Weijie</creatorcontrib><description>In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a virtual-realistic fused dataset, short for ViRFD. The R-part is composed of a realistic dataset from our previous work, and the V-part is simulated by a learning-based method proposed in this paper. Unlike traditional manual methods, we use a virtual engine (Unity) to simulate datasets, since the corresponding ground-truth labels can be automatically extracted by the engine. Specifically, we propose a novel synthetic dataset simulator, named RockSegX . It contains abundant virtual 3D resources to ensure the diversity and fidelity of generated datasets. The main feature of RockSegX lies in its content flexibility, i.e., we are able to control the content of dataset by adjusting the values of several attributes. These attributes are carefully designed for reducing the content difference between V-part and R-part datasets. And we employ a learning-based method to automatically adjust the attributes so that the V-part dataset has the smallest content difference with the R-part. Experimental results show the effectiveness of our method in improving the quality of simulated dataset, and it further boosts the test accuracy for real-world segmentation.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07179-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Boring machines ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Drilling &amp; boring machinery ; Image Processing and Computer Vision ; Learning ; Original Article ; Probability and Statistics in Computer Science ; Semantic segmentation ; Simulation ; Tunnel construction</subject><ispartof>Neural computing &amp; applications, 2022-08, Vol.34 (16), p.13485-13498</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1d1f4ba8f6a496c6bb9bf61f40a14d90ef6a292e2d3aa11c770383049ae1ac8e3</citedby><cites>FETCH-LOGICAL-c319t-1d1f4ba8f6a496c6bb9bf61f40a14d90ef6a292e2d3aa11c770383049ae1ac8e3</cites><orcidid>0000-0001-5791-1823 ; 0000-0002-9593-9429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07179-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07179-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xue, Zhenfeng</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Liu, Zhitao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Mao, Weijie</creatorcontrib><title>ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a virtual-realistic fused dataset, short for ViRFD. The R-part is composed of a realistic dataset from our previous work, and the V-part is simulated by a learning-based method proposed in this paper. Unlike traditional manual methods, we use a virtual engine (Unity) to simulate datasets, since the corresponding ground-truth labels can be automatically extracted by the engine. Specifically, we propose a novel synthetic dataset simulator, named RockSegX . It contains abundant virtual 3D resources to ensure the diversity and fidelity of generated datasets. The main feature of RockSegX lies in its content flexibility, i.e., we are able to control the content of dataset by adjusting the values of several attributes. These attributes are carefully designed for reducing the content difference between V-part and R-part datasets. And we employ a learning-based method to automatically adjust the attributes so that the V-part dataset has the smallest content difference with the R-part. Experimental results show the effectiveness of our method in improving the quality of simulated dataset, and it further boosts the test accuracy for real-world segmentation.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Boring machines</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Drilling &amp; boring machinery</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Semantic segmentation</subject><subject>Simulation</subject><subject>Tunnel construction</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA6-jJpWnjTkdHBUXQ0W1I01Qyju2YpML49EYruHN14L9x-BA6pHBMAcqTCFAwSoAxAiUtFRFbaEIF54RDUW2jCSiRbSn4LtqLcQkAQlbFBD0--4f5xSk2-MOHNJgVCc6sfEze4naIrsGNSSa6hNs-4NDbVxz9p8OmM6tN9BH7Di_O77Dtu5jCYJPvu32005pVdAe_d4qe5peL2TW5vb-6mZ3dEsupSoQ2tBW1qVpphJJW1rWqW5k1MFQ0Clw2mGKONdwYSm1ZAq84CGUcNbZyfIqOxt116N8HF5Ne9kPIj0XNpOKFkFJUOcXGlA19jMG1eh38mwkbTUF_w9MjPJ3h6R94WuQSH0sxh7sXF_6m_2l9ATbzcec</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xue, Zhenfeng</creator><creator>Chen, Liang</creator><creator>Liu, Zhitao</creator><creator>Liu, Yong</creator><creator>Mao, Weijie</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5791-1823</orcidid><orcidid>https://orcid.org/0000-0002-9593-9429</orcidid></search><sort><creationdate>20220801</creationdate><title>ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction</title><author>Xue, Zhenfeng ; Chen, Liang ; Liu, Zhitao ; Liu, Yong ; Mao, Weijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1d1f4ba8f6a496c6bb9bf61f40a14d90ef6a292e2d3aa11c770383049ae1ac8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Boring machines</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Drilling &amp; boring machinery</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Semantic segmentation</topic><topic>Simulation</topic><topic>Tunnel construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zhenfeng</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Liu, Zhitao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Mao, Weijie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Zhenfeng</au><au>Chen, Liang</au><au>Liu, Zhitao</au><au>Liu, Yong</au><au>Mao, Weijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>34</volume><issue>16</issue><spage>13485</spage><epage>13498</epage><pages>13485-13498</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a virtual-realistic fused dataset, short for ViRFD. The R-part is composed of a realistic dataset from our previous work, and the V-part is simulated by a learning-based method proposed in this paper. Unlike traditional manual methods, we use a virtual engine (Unity) to simulate datasets, since the corresponding ground-truth labels can be automatically extracted by the engine. Specifically, we propose a novel synthetic dataset simulator, named RockSegX . It contains abundant virtual 3D resources to ensure the diversity and fidelity of generated datasets. The main feature of RockSegX lies in its content flexibility, i.e., we are able to control the content of dataset by adjusting the values of several attributes. These attributes are carefully designed for reducing the content difference between V-part and R-part datasets. And we employ a learning-based method to automatically adjust the attributes so that the V-part dataset has the smallest content difference with the R-part. Experimental results show the effectiveness of our method in improving the quality of simulated dataset, and it further boosts the test accuracy for real-world segmentation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07179-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5791-1823</orcidid><orcidid>https://orcid.org/0000-0002-9593-9429</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-08, Vol.34 (16), p.13485-13498
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2693546648
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Boring machines
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Drilling & boring machinery
Image Processing and Computer Vision
Learning
Original Article
Probability and Statistics in Computer Science
Semantic segmentation
Simulation
Tunnel construction
title ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ViRFD:%20a%20virtual-realistic%20fused%20dataset%20for%20rock%20size%20analysis%20in%20TBM%20construction&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Xue,%20Zhenfeng&rft.date=2022-08-01&rft.volume=34&rft.issue=16&rft.spage=13485&rft.epage=13498&rft.pages=13485-13498&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07179-4&rft_dat=%3Cproquest_cross%3E2693546648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693546648&rft_id=info:pmid/&rfr_iscdi=true