ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction
In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-08, Vol.34 (16), p.13485-13498 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13498 |
---|---|
container_issue | 16 |
container_start_page | 13485 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Xue, Zhenfeng Chen, Liang Liu, Zhitao Liu, Yong Mao, Weijie |
description | In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a virtual-realistic fused dataset, short for ViRFD. The R-part is composed of a realistic dataset from our previous work, and the V-part is simulated by a learning-based method proposed in this paper. Unlike traditional manual methods, we use a virtual engine (Unity) to simulate datasets, since the corresponding ground-truth labels can be automatically extracted by the engine. Specifically, we propose a novel synthetic dataset simulator, named
RockSegX
. It contains abundant virtual 3D resources to ensure the diversity and fidelity of generated datasets. The main feature of
RockSegX
lies in its content flexibility, i.e., we are able to control the content of dataset by adjusting the values of several attributes. These attributes are carefully designed for reducing the content difference between V-part and R-part datasets. And we employ a learning-based method to automatically adjust the attributes so that the V-part dataset has the smallest content difference with the R-part. Experimental results show the effectiveness of our method in improving the quality of simulated dataset, and it further boosts the test accuracy for real-world segmentation. |
doi_str_mv | 10.1007/s00521-022-07179-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693546648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693546648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1d1f4ba8f6a496c6bb9bf61f40a14d90ef6a292e2d3aa11c770383049ae1ac8e3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA6-jJpWnjTkdHBUXQ0W1I01Qyju2YpML49EYruHN14L9x-BA6pHBMAcqTCFAwSoAxAiUtFRFbaEIF54RDUW2jCSiRbSn4LtqLcQkAQlbFBD0--4f5xSk2-MOHNJgVCc6sfEze4naIrsGNSSa6hNs-4NDbVxz9p8OmM6tN9BH7Di_O77Dtu5jCYJPvu32005pVdAe_d4qe5peL2TW5vb-6mZ3dEsupSoQ2tBW1qVpphJJW1rWqW5k1MFQ0Clw2mGKONdwYSm1ZAq84CGUcNbZyfIqOxt116N8HF5Ne9kPIj0XNpOKFkFJUOcXGlA19jMG1eh38mwkbTUF_w9MjPJ3h6R94WuQSH0sxh7sXF_6m_2l9ATbzcec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693546648</pqid></control><display><type>article</type><title>ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xue, Zhenfeng ; Chen, Liang ; Liu, Zhitao ; Liu, Yong ; Mao, Weijie</creator><creatorcontrib>Xue, Zhenfeng ; Chen, Liang ; Liu, Zhitao ; Liu, Yong ; Mao, Weijie</creatorcontrib><description>In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a virtual-realistic fused dataset, short for ViRFD. The R-part is composed of a realistic dataset from our previous work, and the V-part is simulated by a learning-based method proposed in this paper. Unlike traditional manual methods, we use a virtual engine (Unity) to simulate datasets, since the corresponding ground-truth labels can be automatically extracted by the engine. Specifically, we propose a novel synthetic dataset simulator, named
RockSegX
. It contains abundant virtual 3D resources to ensure the diversity and fidelity of generated datasets. The main feature of
RockSegX
lies in its content flexibility, i.e., we are able to control the content of dataset by adjusting the values of several attributes. These attributes are carefully designed for reducing the content difference between V-part and R-part datasets. And we employ a learning-based method to automatically adjust the attributes so that the V-part dataset has the smallest content difference with the R-part. Experimental results show the effectiveness of our method in improving the quality of simulated dataset, and it further boosts the test accuracy for real-world segmentation.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07179-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Boring machines ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Drilling & boring machinery ; Image Processing and Computer Vision ; Learning ; Original Article ; Probability and Statistics in Computer Science ; Semantic segmentation ; Simulation ; Tunnel construction</subject><ispartof>Neural computing & applications, 2022-08, Vol.34 (16), p.13485-13498</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1d1f4ba8f6a496c6bb9bf61f40a14d90ef6a292e2d3aa11c770383049ae1ac8e3</citedby><cites>FETCH-LOGICAL-c319t-1d1f4ba8f6a496c6bb9bf61f40a14d90ef6a292e2d3aa11c770383049ae1ac8e3</cites><orcidid>0000-0001-5791-1823 ; 0000-0002-9593-9429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07179-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07179-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xue, Zhenfeng</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Liu, Zhitao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Mao, Weijie</creatorcontrib><title>ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a virtual-realistic fused dataset, short for ViRFD. The R-part is composed of a realistic dataset from our previous work, and the V-part is simulated by a learning-based method proposed in this paper. Unlike traditional manual methods, we use a virtual engine (Unity) to simulate datasets, since the corresponding ground-truth labels can be automatically extracted by the engine. Specifically, we propose a novel synthetic dataset simulator, named
RockSegX
. It contains abundant virtual 3D resources to ensure the diversity and fidelity of generated datasets. The main feature of
RockSegX
lies in its content flexibility, i.e., we are able to control the content of dataset by adjusting the values of several attributes. These attributes are carefully designed for reducing the content difference between V-part and R-part datasets. And we employ a learning-based method to automatically adjust the attributes so that the V-part dataset has the smallest content difference with the R-part. Experimental results show the effectiveness of our method in improving the quality of simulated dataset, and it further boosts the test accuracy for real-world segmentation.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Boring machines</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Drilling & boring machinery</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Semantic segmentation</subject><subject>Simulation</subject><subject>Tunnel construction</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuA6-jJpWnjTkdHBUXQ0W1I01Qyju2YpML49EYruHN14L9x-BA6pHBMAcqTCFAwSoAxAiUtFRFbaEIF54RDUW2jCSiRbSn4LtqLcQkAQlbFBD0--4f5xSk2-MOHNJgVCc6sfEze4naIrsGNSSa6hNs-4NDbVxz9p8OmM6tN9BH7Di_O77Dtu5jCYJPvu32005pVdAe_d4qe5peL2TW5vb-6mZ3dEsupSoQ2tBW1qVpphJJW1rWqW5k1MFQ0Clw2mGKONdwYSm1ZAq84CGUcNbZyfIqOxt116N8HF5Ne9kPIj0XNpOKFkFJUOcXGlA19jMG1eh38mwkbTUF_w9MjPJ3h6R94WuQSH0sxh7sXF_6m_2l9ATbzcec</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xue, Zhenfeng</creator><creator>Chen, Liang</creator><creator>Liu, Zhitao</creator><creator>Liu, Yong</creator><creator>Mao, Weijie</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5791-1823</orcidid><orcidid>https://orcid.org/0000-0002-9593-9429</orcidid></search><sort><creationdate>20220801</creationdate><title>ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction</title><author>Xue, Zhenfeng ; Chen, Liang ; Liu, Zhitao ; Liu, Yong ; Mao, Weijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1d1f4ba8f6a496c6bb9bf61f40a14d90ef6a292e2d3aa11c770383049ae1ac8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Boring machines</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Drilling & boring machinery</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Semantic segmentation</topic><topic>Simulation</topic><topic>Tunnel construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Zhenfeng</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Liu, Zhitao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Mao, Weijie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Zhenfeng</au><au>Chen, Liang</au><au>Liu, Zhitao</au><au>Liu, Yong</au><au>Mao, Weijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>34</volume><issue>16</issue><spage>13485</spage><epage>13498</epage><pages>13485-13498</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In TBM (Tunnel Boring Machine) construction process, the rock size analysis system plays an important role in assisting driving. Its core algorithm is based on semantic segmentation, and it brings challenges to dataset acquisition in real applications. To relieve this problem, this paper proposes a virtual-realistic fused dataset, short for ViRFD. The R-part is composed of a realistic dataset from our previous work, and the V-part is simulated by a learning-based method proposed in this paper. Unlike traditional manual methods, we use a virtual engine (Unity) to simulate datasets, since the corresponding ground-truth labels can be automatically extracted by the engine. Specifically, we propose a novel synthetic dataset simulator, named
RockSegX
. It contains abundant virtual 3D resources to ensure the diversity and fidelity of generated datasets. The main feature of
RockSegX
lies in its content flexibility, i.e., we are able to control the content of dataset by adjusting the values of several attributes. These attributes are carefully designed for reducing the content difference between V-part and R-part datasets. And we employ a learning-based method to automatically adjust the attributes so that the V-part dataset has the smallest content difference with the R-part. Experimental results show the effectiveness of our method in improving the quality of simulated dataset, and it further boosts the test accuracy for real-world segmentation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07179-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5791-1823</orcidid><orcidid>https://orcid.org/0000-0002-9593-9429</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-08, Vol.34 (16), p.13485-13498 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2693546648 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Boring machines Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Drilling & boring machinery Image Processing and Computer Vision Learning Original Article Probability and Statistics in Computer Science Semantic segmentation Simulation Tunnel construction |
title | ViRFD: a virtual-realistic fused dataset for rock size analysis in TBM construction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ViRFD:%20a%20virtual-realistic%20fused%20dataset%20for%20rock%20size%20analysis%20in%20TBM%20construction&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Xue,%20Zhenfeng&rft.date=2022-08-01&rft.volume=34&rft.issue=16&rft.spage=13485&rft.epage=13498&rft.pages=13485-13498&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07179-4&rft_dat=%3Cproquest_cross%3E2693546648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693546648&rft_id=info:pmid/&rfr_iscdi=true |