Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation
Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet th...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2022-08, Vol.81 (20), p.28431-28477 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28477 |
---|---|
container_issue | 20 |
container_start_page | 28431 |
container_title | Multimedia tools and applications |
container_volume | 81 |
creator | Qiao, CaiCai Wu, ChengMao Li, ChangXing Wang, JiaYe |
description | Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet the needs of image with high noise. This paper proposed a novel robust fuzzy local information clustering combined kernel metric with guided filter. Firstly, guided filter is introduced into fuzzy local information clustering with kernel metric (KWFLICM), and a novel multiple objective optimization model for fuzzy clustering is constructed. Secondly, the optimization model is solved by Lagrange multiplier method, and the iterative algorithm for image segmentation is presented. Experimental results show that the proposed algorithm has better segmentation performance and robustness than existing state of the art guided filter-driven fuzzy clustering with local information. |
doi_str_mv | 10.1007/s11042-022-12840-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693179081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693179081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ebb31221a0465a6e59ae3a71009c05d17baec2e92ef192a1ec932bc2c16384613</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwBzhF4hyIk7ZZjmiCgTSJC5xDmrojo2tH0oLYrydbkbhxsqXn92x_hFwCvwbO1U0E4JlgXAgGYpZxxo_IBHIlmVICjlMvZ5ypnMMpOYtxzTkUucgm5HUx-AorWvumx8Cq4D-xpe8YWmxoPex239Q1Q0yab1f0y_dvtOmcbahv6y5sbO-7lqaOtp2PSP3GrpBGXG2w7Q_iOTmpbRPx4rdOycv93fP8gS2fFo_z2yVzItM9w7KUIARYnhW5LTDXFqVV6TnteF6BKi06gVpgDVpYQKelKJ1wUMhZVoCckqsxdxu6jwFjb9bdENq00ohCS1Caz_ZTYpxyoYsxYG22Id0cvg1wsydpRpImkTQHkoYnkxxNcbungOEv-h_XD46kd3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693179081</pqid></control><display><type>article</type><title>Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation</title><source>SpringerLink Journals</source><creator>Qiao, CaiCai ; Wu, ChengMao ; Li, ChangXing ; Wang, JiaYe</creator><creatorcontrib>Qiao, CaiCai ; Wu, ChengMao ; Li, ChangXing ; Wang, JiaYe</creatorcontrib><description>Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet the needs of image with high noise. This paper proposed a novel robust fuzzy local information clustering combined kernel metric with guided filter. Firstly, guided filter is introduced into fuzzy local information clustering with kernel metric (KWFLICM), and a novel multiple objective optimization model for fuzzy clustering is constructed. Secondly, the optimization model is solved by Lagrange multiplier method, and the iterative algorithm for image segmentation is presented. Experimental results show that the proposed algorithm has better segmentation performance and robustness than existing state of the art guided filter-driven fuzzy clustering with local information.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12840-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Clustering ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Image segmentation ; Iterative algorithms ; Iterative methods ; Kernels ; Lagrange multiplier ; Multimedia ; Multimedia Information Systems ; Multiple objective analysis ; Neighborhoods ; Noise intensity ; Optimization models ; Robustness (mathematics) ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-08, Vol.81 (20), p.28431-28477</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-ebb31221a0465a6e59ae3a71009c05d17baec2e92ef192a1ec932bc2c16384613</citedby><cites>FETCH-LOGICAL-c249t-ebb31221a0465a6e59ae3a71009c05d17baec2e92ef192a1ec932bc2c16384613</cites><orcidid>0000-0003-1811-7218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12840-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12840-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qiao, CaiCai</creatorcontrib><creatorcontrib>Wu, ChengMao</creatorcontrib><creatorcontrib>Li, ChangXing</creatorcontrib><creatorcontrib>Wang, JiaYe</creatorcontrib><title>Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet the needs of image with high noise. This paper proposed a novel robust fuzzy local information clustering combined kernel metric with guided filter. Firstly, guided filter is introduced into fuzzy local information clustering with kernel metric (KWFLICM), and a novel multiple objective optimization model for fuzzy clustering is constructed. Secondly, the optimization model is solved by Lagrange multiplier method, and the iterative algorithm for image segmentation is presented. Experimental results show that the proposed algorithm has better segmentation performance and robustness than existing state of the art guided filter-driven fuzzy clustering with local information.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Image segmentation</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Kernels</subject><subject>Lagrange multiplier</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Multiple objective analysis</subject><subject>Neighborhoods</subject><subject>Noise intensity</subject><subject>Optimization models</subject><subject>Robustness (mathematics)</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFPwzAMhSMEEmPwBzhF4hyIk7ZZjmiCgTSJC5xDmrojo2tH0oLYrydbkbhxsqXn92x_hFwCvwbO1U0E4JlgXAgGYpZxxo_IBHIlmVICjlMvZ5ypnMMpOYtxzTkUucgm5HUx-AorWvumx8Cq4D-xpe8YWmxoPex239Q1Q0yab1f0y_dvtOmcbahv6y5sbO-7lqaOtp2PSP3GrpBGXG2w7Q_iOTmpbRPx4rdOycv93fP8gS2fFo_z2yVzItM9w7KUIARYnhW5LTDXFqVV6TnteF6BKi06gVpgDVpYQKelKJ1wUMhZVoCckqsxdxu6jwFjb9bdENq00ohCS1Caz_ZTYpxyoYsxYG22Id0cvg1wsydpRpImkTQHkoYnkxxNcbungOEv-h_XD46kd3s</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Qiao, CaiCai</creator><creator>Wu, ChengMao</creator><creator>Li, ChangXing</creator><creator>Wang, JiaYe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1811-7218</orcidid></search><sort><creationdate>20220801</creationdate><title>Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation</title><author>Qiao, CaiCai ; Wu, ChengMao ; Li, ChangXing ; Wang, JiaYe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ebb31221a0465a6e59ae3a71009c05d17baec2e92ef192a1ec932bc2c16384613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Image segmentation</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Kernels</topic><topic>Lagrange multiplier</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Multiple objective analysis</topic><topic>Neighborhoods</topic><topic>Noise intensity</topic><topic>Optimization models</topic><topic>Robustness (mathematics)</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, CaiCai</creatorcontrib><creatorcontrib>Wu, ChengMao</creatorcontrib><creatorcontrib>Li, ChangXing</creatorcontrib><creatorcontrib>Wang, JiaYe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, CaiCai</au><au>Wu, ChengMao</au><au>Li, ChangXing</au><au>Wang, JiaYe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>81</volume><issue>20</issue><spage>28431</spage><epage>28477</epage><pages>28431-28477</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet the needs of image with high noise. This paper proposed a novel robust fuzzy local information clustering combined kernel metric with guided filter. Firstly, guided filter is introduced into fuzzy local information clustering with kernel metric (KWFLICM), and a novel multiple objective optimization model for fuzzy clustering is constructed. Secondly, the optimization model is solved by Lagrange multiplier method, and the iterative algorithm for image segmentation is presented. Experimental results show that the proposed algorithm has better segmentation performance and robustness than existing state of the art guided filter-driven fuzzy clustering with local information.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-12840-0</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0003-1811-7218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2022-08, Vol.81 (20), p.28431-28477 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2693179081 |
source | SpringerLink Journals |
subjects | Algorithms Clustering Computer Communication Networks Computer Science Data Structures and Information Theory Image segmentation Iterative algorithms Iterative methods Kernels Lagrange multiplier Multimedia Multimedia Information Systems Multiple objective analysis Neighborhoods Noise intensity Optimization models Robustness (mathematics) Special Purpose and Application-Based Systems |
title | Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guided%20filter-driven%20kernel%20fuzzy%20clustering%20with%20local%20information%20for%20noise%20image%20segmentation&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Qiao,%20CaiCai&rft.date=2022-08-01&rft.volume=81&rft.issue=20&rft.spage=28431&rft.epage=28477&rft.pages=28431-28477&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12840-0&rft_dat=%3Cproquest_cross%3E2693179081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693179081&rft_id=info:pmid/&rfr_iscdi=true |