Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation

Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022-08, Vol.81 (20), p.28431-28477
Hauptverfasser: Qiao, CaiCai, Wu, ChengMao, Li, ChangXing, Wang, JiaYe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28477
container_issue 20
container_start_page 28431
container_title Multimedia tools and applications
container_volume 81
creator Qiao, CaiCai
Wu, ChengMao
Li, ChangXing
Wang, JiaYe
description Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet the needs of image with high noise. This paper proposed a novel robust fuzzy local information clustering combined kernel metric with guided filter. Firstly, guided filter is introduced into fuzzy local information clustering with kernel metric (KWFLICM), and a novel multiple objective optimization model for fuzzy clustering is constructed. Secondly, the optimization model is solved by Lagrange multiplier method, and the iterative algorithm for image segmentation is presented. Experimental results show that the proposed algorithm has better segmentation performance and robustness than existing state of the art guided filter-driven fuzzy clustering with local information.
doi_str_mv 10.1007/s11042-022-12840-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2693179081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693179081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ebb31221a0465a6e59ae3a71009c05d17baec2e92ef192a1ec932bc2c16384613</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwBzhF4hyIk7ZZjmiCgTSJC5xDmrojo2tH0oLYrydbkbhxsqXn92x_hFwCvwbO1U0E4JlgXAgGYpZxxo_IBHIlmVICjlMvZ5ypnMMpOYtxzTkUucgm5HUx-AorWvumx8Cq4D-xpe8YWmxoPex239Q1Q0yab1f0y_dvtOmcbahv6y5sbO-7lqaOtp2PSP3GrpBGXG2w7Q_iOTmpbRPx4rdOycv93fP8gS2fFo_z2yVzItM9w7KUIARYnhW5LTDXFqVV6TnteF6BKi06gVpgDVpYQKelKJ1wUMhZVoCckqsxdxu6jwFjb9bdENq00ohCS1Caz_ZTYpxyoYsxYG22Id0cvg1wsydpRpImkTQHkoYnkxxNcbungOEv-h_XD46kd3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693179081</pqid></control><display><type>article</type><title>Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation</title><source>SpringerLink Journals</source><creator>Qiao, CaiCai ; Wu, ChengMao ; Li, ChangXing ; Wang, JiaYe</creator><creatorcontrib>Qiao, CaiCai ; Wu, ChengMao ; Li, ChangXing ; Wang, JiaYe</creatorcontrib><description>Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet the needs of image with high noise. This paper proposed a novel robust fuzzy local information clustering combined kernel metric with guided filter. Firstly, guided filter is introduced into fuzzy local information clustering with kernel metric (KWFLICM), and a novel multiple objective optimization model for fuzzy clustering is constructed. Secondly, the optimization model is solved by Lagrange multiplier method, and the iterative algorithm for image segmentation is presented. Experimental results show that the proposed algorithm has better segmentation performance and robustness than existing state of the art guided filter-driven fuzzy clustering with local information.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12840-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Clustering ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Image segmentation ; Iterative algorithms ; Iterative methods ; Kernels ; Lagrange multiplier ; Multimedia ; Multimedia Information Systems ; Multiple objective analysis ; Neighborhoods ; Noise intensity ; Optimization models ; Robustness (mathematics) ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-08, Vol.81 (20), p.28431-28477</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-ebb31221a0465a6e59ae3a71009c05d17baec2e92ef192a1ec932bc2c16384613</citedby><cites>FETCH-LOGICAL-c249t-ebb31221a0465a6e59ae3a71009c05d17baec2e92ef192a1ec932bc2c16384613</cites><orcidid>0000-0003-1811-7218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12840-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12840-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qiao, CaiCai</creatorcontrib><creatorcontrib>Wu, ChengMao</creatorcontrib><creatorcontrib>Li, ChangXing</creatorcontrib><creatorcontrib>Wang, JiaYe</creatorcontrib><title>Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet the needs of image with high noise. This paper proposed a novel robust fuzzy local information clustering combined kernel metric with guided filter. Firstly, guided filter is introduced into fuzzy local information clustering with kernel metric (KWFLICM), and a novel multiple objective optimization model for fuzzy clustering is constructed. Secondly, the optimization model is solved by Lagrange multiplier method, and the iterative algorithm for image segmentation is presented. Experimental results show that the proposed algorithm has better segmentation performance and robustness than existing state of the art guided filter-driven fuzzy clustering with local information.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Image segmentation</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Kernels</subject><subject>Lagrange multiplier</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Multiple objective analysis</subject><subject>Neighborhoods</subject><subject>Noise intensity</subject><subject>Optimization models</subject><subject>Robustness (mathematics)</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFPwzAMhSMEEmPwBzhF4hyIk7ZZjmiCgTSJC5xDmrojo2tH0oLYrydbkbhxsqXn92x_hFwCvwbO1U0E4JlgXAgGYpZxxo_IBHIlmVICjlMvZ5ypnMMpOYtxzTkUucgm5HUx-AorWvumx8Cq4D-xpe8YWmxoPex239Q1Q0yab1f0y_dvtOmcbahv6y5sbO-7lqaOtp2PSP3GrpBGXG2w7Q_iOTmpbRPx4rdOycv93fP8gS2fFo_z2yVzItM9w7KUIARYnhW5LTDXFqVV6TnteF6BKi06gVpgDVpYQKelKJ1wUMhZVoCckqsxdxu6jwFjb9bdENq00ohCS1Caz_ZTYpxyoYsxYG22Id0cvg1wsydpRpImkTQHkoYnkxxNcbungOEv-h_XD46kd3s</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Qiao, CaiCai</creator><creator>Wu, ChengMao</creator><creator>Li, ChangXing</creator><creator>Wang, JiaYe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1811-7218</orcidid></search><sort><creationdate>20220801</creationdate><title>Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation</title><author>Qiao, CaiCai ; Wu, ChengMao ; Li, ChangXing ; Wang, JiaYe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ebb31221a0465a6e59ae3a71009c05d17baec2e92ef192a1ec932bc2c16384613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Image segmentation</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Kernels</topic><topic>Lagrange multiplier</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Multiple objective analysis</topic><topic>Neighborhoods</topic><topic>Noise intensity</topic><topic>Optimization models</topic><topic>Robustness (mathematics)</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, CaiCai</creatorcontrib><creatorcontrib>Wu, ChengMao</creatorcontrib><creatorcontrib>Li, ChangXing</creatorcontrib><creatorcontrib>Wang, JiaYe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, CaiCai</au><au>Wu, ChengMao</au><au>Li, ChangXing</au><au>Wang, JiaYe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>81</volume><issue>20</issue><spage>28431</spage><epage>28477</epage><pages>28431-28477</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Fuzzy local information clustering is the most widely robust segmentation methods, but it is only suitable for image corrupted by certain intensity noise. Later, although fuzzy local information clustering integrated guided filter is improved the ability of suppressing noise, it still cannot meet the needs of image with high noise. This paper proposed a novel robust fuzzy local information clustering combined kernel metric with guided filter. Firstly, guided filter is introduced into fuzzy local information clustering with kernel metric (KWFLICM), and a novel multiple objective optimization model for fuzzy clustering is constructed. Secondly, the optimization model is solved by Lagrange multiplier method, and the iterative algorithm for image segmentation is presented. Experimental results show that the proposed algorithm has better segmentation performance and robustness than existing state of the art guided filter-driven fuzzy clustering with local information.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-12840-0</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0003-1811-7218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022-08, Vol.81 (20), p.28431-28477
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2693179081
source SpringerLink Journals
subjects Algorithms
Clustering
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Image segmentation
Iterative algorithms
Iterative methods
Kernels
Lagrange multiplier
Multimedia
Multimedia Information Systems
Multiple objective analysis
Neighborhoods
Noise intensity
Optimization models
Robustness (mathematics)
Special Purpose and Application-Based Systems
title Guided filter-driven kernel fuzzy clustering with local information for noise image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guided%20filter-driven%20kernel%20fuzzy%20clustering%20with%20local%20information%20for%20noise%20image%20segmentation&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Qiao,%20CaiCai&rft.date=2022-08-01&rft.volume=81&rft.issue=20&rft.spage=28431&rft.epage=28477&rft.pages=28431-28477&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12840-0&rft_dat=%3Cproquest_cross%3E2693179081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693179081&rft_id=info:pmid/&rfr_iscdi=true