Coarse-Refine Network With Upsampling Techniques and Fourier Loss for the Reconstruction of Missing Seismic Data

Seismic data are often irregularly or insufficiently sampled along the spatial direction due to malfunctioning of receivers and limited survey budgets. Recently, machine learning techniques have begun to be used to effectively reconstruct missing traces and obtain densely sampled seismic gathers. On...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-15
Hauptverfasser: Park, Hanjoon, Lee, Jun-Woo, Hwang, Jongha, Min, Dong-Joo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Park, Hanjoon
Lee, Jun-Woo
Hwang, Jongha
Min, Dong-Joo
description Seismic data are often irregularly or insufficiently sampled along the spatial direction due to malfunctioning of receivers and limited survey budgets. Recently, machine learning techniques have begun to be used to effectively reconstruct missing traces and obtain densely sampled seismic gathers. One of the most widely used machine learning techniques for seismic trace interpolation is UNet with the mean-squared error (MSE). However, seismic trace interpolation with the UNet architecture suffers from aliasing, and the MSE used as a loss function causes an oversmoothing problem. To mitigate those problems in seismic trace interpolation, we propose a new strategy of using coarse-refine UNet (CFunet) and the Fourier loss. CFunet consists of two UNets and an upsampling process between them. The upsampling process is done by padding zeroes in the Fourier domain. We design the new loss function by combining the MSE and the Fourier loss. Unlike the MSE, the Fourier loss is not a pixelwise loss but plays a role in capturing relations between pixels. Synthetic and field data experiments show that the proposed method reduces aliased features and precisely reconstructs missing traces while accelerating the convergence of the network. By applying our strategy to realistic cases, we show that our strategy can be applied to obtain more densely sampled data from acquired data.
doi_str_mv 10.1109/TGRS.2022.3190292
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2692810602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9826799</ieee_id><sourcerecordid>2692810602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9a7740a5e0ac1a8be8104c415bb4b99f351e413de7dee8bf147f03fb25d7b6f43</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKsPIG4CrqfmZDKXLKXaKlSFXnA5ZNITm2onY5Iivr0ztLg6m_92PkKugY0AmLxbTueLEWecj1KQjEt-QgaQZWXCciFOyYCBzBNeSn5OLkLYMgYig2JA2rFTPmAyR2MbpK8Yf5z_pO82buiqDWrXftnmgy5Rbxr7vcdAVbOmE7f3Fj2duRCocZ7GDdI5ateE6Pc6WtdQZ-iLDaF3L9CGndX0QUV1Sc6M-gp4dbxDspo8LsdPyext-jy-nyWayzQmUhWFYCpDpjSossYSmNACsroWtZQmzQAFpGss1ohlbUAUhqWm5tm6qHMj0iG5PeS23vW7Y7XtRjddZcVzybu4nPFOBQeV9t0rHk3VertT_rcCVvVgqx5s1YOtjmA7z83BYxHxXy9LnhdSpn_IWnXO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692810602</pqid></control><display><type>article</type><title>Coarse-Refine Network With Upsampling Techniques and Fourier Loss for the Reconstruction of Missing Seismic Data</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Hanjoon ; Lee, Jun-Woo ; Hwang, Jongha ; Min, Dong-Joo</creator><creatorcontrib>Park, Hanjoon ; Lee, Jun-Woo ; Hwang, Jongha ; Min, Dong-Joo</creatorcontrib><description>Seismic data are often irregularly or insufficiently sampled along the spatial direction due to malfunctioning of receivers and limited survey budgets. Recently, machine learning techniques have begun to be used to effectively reconstruct missing traces and obtain densely sampled seismic gathers. One of the most widely used machine learning techniques for seismic trace interpolation is UNet with the mean-squared error (MSE). However, seismic trace interpolation with the UNet architecture suffers from aliasing, and the MSE used as a loss function causes an oversmoothing problem. To mitigate those problems in seismic trace interpolation, we propose a new strategy of using coarse-refine UNet (CFunet) and the Fourier loss. CFunet consists of two UNets and an upsampling process between them. The upsampling process is done by padding zeroes in the Fourier domain. We design the new loss function by combining the MSE and the Fourier loss. Unlike the MSE, the Fourier loss is not a pixelwise loss but plays a role in capturing relations between pixels. Synthetic and field data experiments show that the proposed method reduces aliased features and precisely reconstructs missing traces while accelerating the convergence of the network. By applying our strategy to realistic cases, we show that our strategy can be applied to obtain more densely sampled data from acquired data.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3190292</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coarse-refine network ; Convergence ; Convolution ; Data acquisition ; Decoding ; Fourier loss ; Fourier transform ; Image reconstruction ; Interpolation ; Learning algorithms ; Machine learning ; Neural networks ; Seismic data ; seismic data interpolation ; Surveying ; Training ; UNet</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9a7740a5e0ac1a8be8104c415bb4b99f351e413de7dee8bf147f03fb25d7b6f43</citedby><cites>FETCH-LOGICAL-c293t-9a7740a5e0ac1a8be8104c415bb4b99f351e413de7dee8bf147f03fb25d7b6f43</cites><orcidid>0000-0002-4447-5070 ; 0000-0001-8520-3605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9826799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9826799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Hanjoon</creatorcontrib><creatorcontrib>Lee, Jun-Woo</creatorcontrib><creatorcontrib>Hwang, Jongha</creatorcontrib><creatorcontrib>Min, Dong-Joo</creatorcontrib><title>Coarse-Refine Network With Upsampling Techniques and Fourier Loss for the Reconstruction of Missing Seismic Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Seismic data are often irregularly or insufficiently sampled along the spatial direction due to malfunctioning of receivers and limited survey budgets. Recently, machine learning techniques have begun to be used to effectively reconstruct missing traces and obtain densely sampled seismic gathers. One of the most widely used machine learning techniques for seismic trace interpolation is UNet with the mean-squared error (MSE). However, seismic trace interpolation with the UNet architecture suffers from aliasing, and the MSE used as a loss function causes an oversmoothing problem. To mitigate those problems in seismic trace interpolation, we propose a new strategy of using coarse-refine UNet (CFunet) and the Fourier loss. CFunet consists of two UNets and an upsampling process between them. The upsampling process is done by padding zeroes in the Fourier domain. We design the new loss function by combining the MSE and the Fourier loss. Unlike the MSE, the Fourier loss is not a pixelwise loss but plays a role in capturing relations between pixels. Synthetic and field data experiments show that the proposed method reduces aliased features and precisely reconstructs missing traces while accelerating the convergence of the network. By applying our strategy to realistic cases, we show that our strategy can be applied to obtain more densely sampled data from acquired data.</description><subject>Coarse-refine network</subject><subject>Convergence</subject><subject>Convolution</subject><subject>Data acquisition</subject><subject>Decoding</subject><subject>Fourier loss</subject><subject>Fourier transform</subject><subject>Image reconstruction</subject><subject>Interpolation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Seismic data</subject><subject>seismic data interpolation</subject><subject>Surveying</subject><subject>Training</subject><subject>UNet</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEUhoMoWKsPIG4CrqfmZDKXLKXaKlSFXnA5ZNITm2onY5Iivr0ztLg6m_92PkKugY0AmLxbTueLEWecj1KQjEt-QgaQZWXCciFOyYCBzBNeSn5OLkLYMgYig2JA2rFTPmAyR2MbpK8Yf5z_pO82buiqDWrXftnmgy5Rbxr7vcdAVbOmE7f3Fj2duRCocZ7GDdI5ateE6Pc6WtdQZ-iLDaF3L9CGndX0QUV1Sc6M-gp4dbxDspo8LsdPyext-jy-nyWayzQmUhWFYCpDpjSossYSmNACsroWtZQmzQAFpGss1ohlbUAUhqWm5tm6qHMj0iG5PeS23vW7Y7XtRjddZcVzybu4nPFOBQeV9t0rHk3VertT_rcCVvVgqx5s1YOtjmA7z83BYxHxXy9LnhdSpn_IWnXO</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Park, Hanjoon</creator><creator>Lee, Jun-Woo</creator><creator>Hwang, Jongha</creator><creator>Min, Dong-Joo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4447-5070</orcidid><orcidid>https://orcid.org/0000-0001-8520-3605</orcidid></search><sort><creationdate>2022</creationdate><title>Coarse-Refine Network With Upsampling Techniques and Fourier Loss for the Reconstruction of Missing Seismic Data</title><author>Park, Hanjoon ; Lee, Jun-Woo ; Hwang, Jongha ; Min, Dong-Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9a7740a5e0ac1a8be8104c415bb4b99f351e413de7dee8bf147f03fb25d7b6f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coarse-refine network</topic><topic>Convergence</topic><topic>Convolution</topic><topic>Data acquisition</topic><topic>Decoding</topic><topic>Fourier loss</topic><topic>Fourier transform</topic><topic>Image reconstruction</topic><topic>Interpolation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Seismic data</topic><topic>seismic data interpolation</topic><topic>Surveying</topic><topic>Training</topic><topic>UNet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hanjoon</creatorcontrib><creatorcontrib>Lee, Jun-Woo</creatorcontrib><creatorcontrib>Hwang, Jongha</creatorcontrib><creatorcontrib>Min, Dong-Joo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Hanjoon</au><au>Lee, Jun-Woo</au><au>Hwang, Jongha</au><au>Min, Dong-Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-Refine Network With Upsampling Techniques and Fourier Loss for the Reconstruction of Missing Seismic Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Seismic data are often irregularly or insufficiently sampled along the spatial direction due to malfunctioning of receivers and limited survey budgets. Recently, machine learning techniques have begun to be used to effectively reconstruct missing traces and obtain densely sampled seismic gathers. One of the most widely used machine learning techniques for seismic trace interpolation is UNet with the mean-squared error (MSE). However, seismic trace interpolation with the UNet architecture suffers from aliasing, and the MSE used as a loss function causes an oversmoothing problem. To mitigate those problems in seismic trace interpolation, we propose a new strategy of using coarse-refine UNet (CFunet) and the Fourier loss. CFunet consists of two UNets and an upsampling process between them. The upsampling process is done by padding zeroes in the Fourier domain. We design the new loss function by combining the MSE and the Fourier loss. Unlike the MSE, the Fourier loss is not a pixelwise loss but plays a role in capturing relations between pixels. Synthetic and field data experiments show that the proposed method reduces aliased features and precisely reconstructs missing traces while accelerating the convergence of the network. By applying our strategy to realistic cases, we show that our strategy can be applied to obtain more densely sampled data from acquired data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3190292</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4447-5070</orcidid><orcidid>https://orcid.org/0000-0001-8520-3605</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-15
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2692810602
source IEEE Electronic Library (IEL)
subjects Coarse-refine network
Convergence
Convolution
Data acquisition
Decoding
Fourier loss
Fourier transform
Image reconstruction
Interpolation
Learning algorithms
Machine learning
Neural networks
Seismic data
seismic data interpolation
Surveying
Training
UNet
title Coarse-Refine Network With Upsampling Techniques and Fourier Loss for the Reconstruction of Missing Seismic Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-Refine%20Network%20With%20Upsampling%20Techniques%20and%20Fourier%20Loss%20for%20the%20Reconstruction%20of%20Missing%20Seismic%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Park,%20Hanjoon&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3190292&rft_dat=%3Cproquest_RIE%3E2692810602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692810602&rft_id=info:pmid/&rft_ieee_id=9826799&rfr_iscdi=true