Driving Active Contours to Concave Regions

Broken characters restoration represents the major challenge of optical character recognition (OCR). Active contours, which have been used successfully to restore ancient documents with high degradations have drawback in restoring characters with deep concavity boundaries. Deep concavity problem rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Webology 2022-01, Vol.19 (1), p.6079-6088
Hauptverfasser: Mosa, Qusay O, Alfoudi, Ali Saeed, Brisam, Ahmed A, Otebolaku, Abayomi M, Lee, Gyu Myoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6088
container_issue 1
container_start_page 6079
container_title Webology
container_volume 19
creator Mosa, Qusay O
Alfoudi, Ali Saeed
Brisam, Ahmed A
Otebolaku, Abayomi M
Lee, Gyu Myoung
description Broken characters restoration represents the major challenge of optical character recognition (OCR). Active contours, which have been used successfully to restore ancient documents with high degradations have drawback in restoring characters with deep concavity boundaries. Deep concavity problem represents the main obstacle, which has prevented Gradient Vector Flow active contour in converge to objects with complex concavity boundaries. In this paper, we proposed a technique to enhance (GVF) active contour using particle swarm optimization (PSO) through directing snake points (snaxels) toward correct positions into deep concavity boundaries of broken characters by comparing with genetic algorithms as an optimization method. Our experimental results showed that particle swarm optimization outperform on genetic algorithm to correct capturing the converged areas and save spent time in optimization process.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2692792819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692792819</sourcerecordid><originalsourceid>FETCH-proquest_journals_26927928193</originalsourceid><addsrcrecordid>eNpjYuA0NDc21TW0sIjgYOAqLs4yMDAxMTIw4GTQcinKLMvMS1dwTC7JLEtVcM7PK8kvLSpWKMkHsZMTgWJBqemZ-XnFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4LqDMPKBVvZGZpZG5pZGFoaUycKgCzKzBL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692792819</pqid></control><display><type>article</type><title>Driving Active Contours to Concave Regions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mosa, Qusay O ; Alfoudi, Ali Saeed ; Brisam, Ahmed A ; Otebolaku, Abayomi M ; Lee, Gyu Myoung</creator><creatorcontrib>Mosa, Qusay O ; Alfoudi, Ali Saeed ; Brisam, Ahmed A ; Otebolaku, Abayomi M ; Lee, Gyu Myoung</creatorcontrib><description>Broken characters restoration represents the major challenge of optical character recognition (OCR). Active contours, which have been used successfully to restore ancient documents with high degradations have drawback in restoring characters with deep concavity boundaries. Deep concavity problem represents the main obstacle, which has prevented Gradient Vector Flow active contour in converge to objects with complex concavity boundaries. In this paper, we proposed a technique to enhance (GVF) active contour using particle swarm optimization (PSO) through directing snake points (snaxels) toward correct positions into deep concavity boundaries of broken characters by comparing with genetic algorithms as an optimization method. Our experimental results showed that particle swarm optimization outperform on genetic algorithm to correct capturing the converged areas and save spent time in optimization process.</description><identifier>EISSN: 1735-188X</identifier><language>eng</language><publisher>Tehran: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</publisher><subject>Energy ; Genetic algorithms ; OCR ; Optimization ; Velocity</subject><ispartof>Webology, 2022-01, Vol.19 (1), p.6079-6088</ispartof><rights>Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Mosa, Qusay O</creatorcontrib><creatorcontrib>Alfoudi, Ali Saeed</creatorcontrib><creatorcontrib>Brisam, Ahmed A</creatorcontrib><creatorcontrib>Otebolaku, Abayomi M</creatorcontrib><creatorcontrib>Lee, Gyu Myoung</creatorcontrib><title>Driving Active Contours to Concave Regions</title><title>Webology</title><description>Broken characters restoration represents the major challenge of optical character recognition (OCR). Active contours, which have been used successfully to restore ancient documents with high degradations have drawback in restoring characters with deep concavity boundaries. Deep concavity problem represents the main obstacle, which has prevented Gradient Vector Flow active contour in converge to objects with complex concavity boundaries. In this paper, we proposed a technique to enhance (GVF) active contour using particle swarm optimization (PSO) through directing snake points (snaxels) toward correct positions into deep concavity boundaries of broken characters by comparing with genetic algorithms as an optimization method. Our experimental results showed that particle swarm optimization outperform on genetic algorithm to correct capturing the converged areas and save spent time in optimization process.</description><subject>Energy</subject><subject>Genetic algorithms</subject><subject>OCR</subject><subject>Optimization</subject><subject>Velocity</subject><issn>1735-188X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0NDc21TW0sIjgYOAqLs4yMDAxMTIw4GTQcinKLMvMS1dwTC7JLEtVcM7PK8kvLSpWKMkHsZMTgWJBqemZ-XnFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4LqDMPKBVvZGZpZG5pZGFoaUycKgCzKzBL</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Mosa, Qusay O</creator><creator>Alfoudi, Ali Saeed</creator><creator>Brisam, Ahmed A</creator><creator>Otebolaku, Abayomi M</creator><creator>Lee, Gyu Myoung</creator><general>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>Driving Active Contours to Concave Regions</title><author>Mosa, Qusay O ; Alfoudi, Ali Saeed ; Brisam, Ahmed A ; Otebolaku, Abayomi M ; Lee, Gyu Myoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26927928193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy</topic><topic>Genetic algorithms</topic><topic>OCR</topic><topic>Optimization</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosa, Qusay O</creatorcontrib><creatorcontrib>Alfoudi, Ali Saeed</creatorcontrib><creatorcontrib>Brisam, Ahmed A</creatorcontrib><creatorcontrib>Otebolaku, Abayomi M</creatorcontrib><creatorcontrib>Lee, Gyu Myoung</creatorcontrib><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Webology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosa, Qusay O</au><au>Alfoudi, Ali Saeed</au><au>Brisam, Ahmed A</au><au>Otebolaku, Abayomi M</au><au>Lee, Gyu Myoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving Active Contours to Concave Regions</atitle><jtitle>Webology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>19</volume><issue>1</issue><spage>6079</spage><epage>6088</epage><pages>6079-6088</pages><eissn>1735-188X</eissn><abstract>Broken characters restoration represents the major challenge of optical character recognition (OCR). Active contours, which have been used successfully to restore ancient documents with high degradations have drawback in restoring characters with deep concavity boundaries. Deep concavity problem represents the main obstacle, which has prevented Gradient Vector Flow active contour in converge to objects with complex concavity boundaries. In this paper, we proposed a technique to enhance (GVF) active contour using particle swarm optimization (PSO) through directing snake points (snaxels) toward correct positions into deep concavity boundaries of broken characters by comparing with genetic algorithms as an optimization method. Our experimental results showed that particle swarm optimization outperform on genetic algorithm to correct capturing the converged areas and save spent time in optimization process.</abstract><cop>Tehran</cop><pub>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</pub></addata></record>
fulltext fulltext
identifier EISSN: 1735-188X
ispartof Webology, 2022-01, Vol.19 (1), p.6079-6088
issn 1735-188X
language eng
recordid cdi_proquest_journals_2692792819
source EZB-FREE-00999 freely available EZB journals
subjects Energy
Genetic algorithms
OCR
Optimization
Velocity
title Driving Active Contours to Concave Regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20Active%20Contours%20to%20Concave%20Regions&rft.jtitle=Webology&rft.au=Mosa,%20Qusay%20O&rft.date=2022-01-01&rft.volume=19&rft.issue=1&rft.spage=6079&rft.epage=6088&rft.pages=6079-6088&rft.eissn=1735-188X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2692792819%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692792819&rft_id=info:pmid/&rfr_iscdi=true