A Theory of Superconductivity based on Bose-Einstein Statistics and Its Application

A theory of superconductivity based on Bose-Einstein statistics was proposed, which can lead to a formula for T C (critical temperature) similar to that of BCS theory, and provide a possible explanation for the complexity of isotope effect and the normal state energy gap in copper-oxides. We proceed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Wuhan University of Technology. Materials science edition 2022-08, Vol.37 (4), p.603-607
Hauptverfasser: Yang, Yandong, Wang, Housheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue 4
container_start_page 603
container_title Journal of Wuhan University of Technology. Materials science edition
container_volume 37
creator Yang, Yandong
Wang, Housheng
description A theory of superconductivity based on Bose-Einstein statistics was proposed, which can lead to a formula for T C (critical temperature) similar to that of BCS theory, and provide a possible explanation for the complexity of isotope effect and the normal state energy gap in copper-oxides. We proceeded from a 3-dimensional harmonic oscillator model to equivalent the superconducting state to a two-dimensional Bose-Einstein condensate bound longitudinally, and pointed out the application conditions of the theory. Under this scheme, we analyzed some typical structural features in copper oxides that favor the production of high-temperature superconductivity. We also discovered that combining this theory with an alternative mechanism -strong coupling to local spin configurations-provided some useful hints for exploring new superconducting materials. In addition, we pointed out a possible link between the phenomenon of superconductivity and magnetostriction, then we proposed some combinations of elements as possible candidates for high temperature superconducting materials based on those analysis.
doi_str_mv 10.1007/s11595-022-2574-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692733484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692733484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-9a5f2d4cbdda2a6836c2de478c1151ff3b266c13615274f4e5ed272b9eea31c03</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gOpq_ycwsa6laKLhoXYdMktGUmoxJRujbmzKCK1f3cjnnXM4HwC3B9wTj-iERUrUVwpQiWtUcsTMwI23LEOasPi87xhhRTtgluEppjzHHTIgZ2C7g7sOGeIShh9txsFEHb0ad3bfLR9ipZA0MHj6GZNHK-ZSt83CbVXYpO52g8gauc4KLYTg4Xc7BX4OLXh2Svfmdc_D2tNotX9Dm9Xm9XGyQpqLJqFVVTw3XnTGKKtEwoamxvG506UL6nnVUCE2YIBWtec9tZQ2taddaqxjRmM3B3ZQ7xPA12pTlPozRl5eSipbWjPGGFxWZVDqGlKLt5RDdp4pHSbA8sZMTO1nYyRM7yYqHTp5UtP7dxr_k_00_X4txhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692733484</pqid></control><display><type>article</type><title>A Theory of Superconductivity based on Bose-Einstein Statistics and Its Application</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Yandong ; Wang, Housheng</creator><creatorcontrib>Yang, Yandong ; Wang, Housheng</creatorcontrib><description>A theory of superconductivity based on Bose-Einstein statistics was proposed, which can lead to a formula for T C (critical temperature) similar to that of BCS theory, and provide a possible explanation for the complexity of isotope effect and the normal state energy gap in copper-oxides. We proceeded from a 3-dimensional harmonic oscillator model to equivalent the superconducting state to a two-dimensional Bose-Einstein condensate bound longitudinally, and pointed out the application conditions of the theory. Under this scheme, we analyzed some typical structural features in copper oxides that favor the production of high-temperature superconductivity. We also discovered that combining this theory with an alternative mechanism -strong coupling to local spin configurations-provided some useful hints for exploring new superconducting materials. In addition, we pointed out a possible link between the phenomenon of superconductivity and magnetostriction, then we proposed some combinations of elements as possible candidates for high temperature superconducting materials based on those analysis.</description><identifier>ISSN: 1000-2413</identifier><identifier>EISSN: 1993-0437</identifier><identifier>DOI: 10.1007/s11595-022-2574-3</identifier><language>eng</language><publisher>Wuhan: Wuhan University of Technology</publisher><subject>Advanced Materials ; BCS theory ; Bose-Einstein condensates ; Chemistry and Materials Science ; Copper oxides ; Energy gap ; Harmonic oscillators ; High temperature ; Isotope effect ; Magnetostriction ; Materials Science ; Quantum statistics ; Superconductivity ; Three dimensional models</subject><ispartof>Journal of Wuhan University of Technology. Materials science edition, 2022-08, Vol.37 (4), p.603-607</ispartof><rights>Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022</rights><rights>Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-9a5f2d4cbdda2a6836c2de478c1151ff3b266c13615274f4e5ed272b9eea31c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11595-022-2574-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11595-022-2574-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Yang, Yandong</creatorcontrib><creatorcontrib>Wang, Housheng</creatorcontrib><title>A Theory of Superconductivity based on Bose-Einstein Statistics and Its Application</title><title>Journal of Wuhan University of Technology. Materials science edition</title><addtitle>J. Wuhan Univ. Technol.-Mat. Sci. Edit</addtitle><description>A theory of superconductivity based on Bose-Einstein statistics was proposed, which can lead to a formula for T C (critical temperature) similar to that of BCS theory, and provide a possible explanation for the complexity of isotope effect and the normal state energy gap in copper-oxides. We proceeded from a 3-dimensional harmonic oscillator model to equivalent the superconducting state to a two-dimensional Bose-Einstein condensate bound longitudinally, and pointed out the application conditions of the theory. Under this scheme, we analyzed some typical structural features in copper oxides that favor the production of high-temperature superconductivity. We also discovered that combining this theory with an alternative mechanism -strong coupling to local spin configurations-provided some useful hints for exploring new superconducting materials. In addition, we pointed out a possible link between the phenomenon of superconductivity and magnetostriction, then we proposed some combinations of elements as possible candidates for high temperature superconducting materials based on those analysis.</description><subject>Advanced Materials</subject><subject>BCS theory</subject><subject>Bose-Einstein condensates</subject><subject>Chemistry and Materials Science</subject><subject>Copper oxides</subject><subject>Energy gap</subject><subject>Harmonic oscillators</subject><subject>High temperature</subject><subject>Isotope effect</subject><subject>Magnetostriction</subject><subject>Materials Science</subject><subject>Quantum statistics</subject><subject>Superconductivity</subject><subject>Three dimensional models</subject><issn>1000-2413</issn><issn>1993-0437</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4C7gOpq_ycwsa6laKLhoXYdMktGUmoxJRujbmzKCK1f3cjnnXM4HwC3B9wTj-iERUrUVwpQiWtUcsTMwI23LEOasPi87xhhRTtgluEppjzHHTIgZ2C7g7sOGeIShh9txsFEHb0ad3bfLR9ipZA0MHj6GZNHK-ZSt83CbVXYpO52g8gauc4KLYTg4Xc7BX4OLXh2Svfmdc_D2tNotX9Dm9Xm9XGyQpqLJqFVVTw3XnTGKKtEwoamxvG506UL6nnVUCE2YIBWtec9tZQ2taddaqxjRmM3B3ZQ7xPA12pTlPozRl5eSipbWjPGGFxWZVDqGlKLt5RDdp4pHSbA8sZMTO1nYyRM7yYqHTp5UtP7dxr_k_00_X4txhQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Yang, Yandong</creator><creator>Wang, Housheng</creator><general>Wuhan University of Technology</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220801</creationdate><title>A Theory of Superconductivity based on Bose-Einstein Statistics and Its Application</title><author>Yang, Yandong ; Wang, Housheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-9a5f2d4cbdda2a6836c2de478c1151ff3b266c13615274f4e5ed272b9eea31c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced Materials</topic><topic>BCS theory</topic><topic>Bose-Einstein condensates</topic><topic>Chemistry and Materials Science</topic><topic>Copper oxides</topic><topic>Energy gap</topic><topic>Harmonic oscillators</topic><topic>High temperature</topic><topic>Isotope effect</topic><topic>Magnetostriction</topic><topic>Materials Science</topic><topic>Quantum statistics</topic><topic>Superconductivity</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yandong</creatorcontrib><creatorcontrib>Wang, Housheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of Wuhan University of Technology. Materials science edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yandong</au><au>Wang, Housheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Theory of Superconductivity based on Bose-Einstein Statistics and Its Application</atitle><jtitle>Journal of Wuhan University of Technology. Materials science edition</jtitle><stitle>J. Wuhan Univ. Technol.-Mat. Sci. Edit</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>603</spage><epage>607</epage><pages>603-607</pages><issn>1000-2413</issn><eissn>1993-0437</eissn><abstract>A theory of superconductivity based on Bose-Einstein statistics was proposed, which can lead to a formula for T C (critical temperature) similar to that of BCS theory, and provide a possible explanation for the complexity of isotope effect and the normal state energy gap in copper-oxides. We proceeded from a 3-dimensional harmonic oscillator model to equivalent the superconducting state to a two-dimensional Bose-Einstein condensate bound longitudinally, and pointed out the application conditions of the theory. Under this scheme, we analyzed some typical structural features in copper oxides that favor the production of high-temperature superconductivity. We also discovered that combining this theory with an alternative mechanism -strong coupling to local spin configurations-provided some useful hints for exploring new superconducting materials. In addition, we pointed out a possible link between the phenomenon of superconductivity and magnetostriction, then we proposed some combinations of elements as possible candidates for high temperature superconducting materials based on those analysis.</abstract><cop>Wuhan</cop><pub>Wuhan University of Technology</pub><doi>10.1007/s11595-022-2574-3</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1000-2413
ispartof Journal of Wuhan University of Technology. Materials science edition, 2022-08, Vol.37 (4), p.603-607
issn 1000-2413
1993-0437
language eng
recordid cdi_proquest_journals_2692733484
source SpringerNature Journals; Alma/SFX Local Collection
subjects Advanced Materials
BCS theory
Bose-Einstein condensates
Chemistry and Materials Science
Copper oxides
Energy gap
Harmonic oscillators
High temperature
Isotope effect
Magnetostriction
Materials Science
Quantum statistics
Superconductivity
Three dimensional models
title A Theory of Superconductivity based on Bose-Einstein Statistics and Its Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Theory%20of%20Superconductivity%20based%20on%20Bose-Einstein%20Statistics%20and%20Its%20Application&rft.jtitle=Journal%20of%20Wuhan%20University%20of%20Technology.%20Materials%20science%20edition&rft.au=Yang,%20Yandong&rft.date=2022-08-01&rft.volume=37&rft.issue=4&rft.spage=603&rft.epage=607&rft.pages=603-607&rft.issn=1000-2413&rft.eissn=1993-0437&rft_id=info:doi/10.1007/s11595-022-2574-3&rft_dat=%3Cproquest_cross%3E2692733484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692733484&rft_id=info:pmid/&rfr_iscdi=true