Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles

For a large class of transitive non-hyperbolic systems, we construct nonhyperbolic ergodic measures with entropy arbitrarily close to its maximal possible value. The systems we consider are partially hyperbolic with one-dimensional central direction for which there are positive entropy ergodic measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2022-08, Vol.394 (1), p.73-141
Hauptverfasser: Díaz, L. J., Gelfert, K., Rams, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1
container_start_page 73
container_title Communications in mathematical physics
container_volume 394
creator Díaz, L. J.
Gelfert, K.
Rams, M.
description For a large class of transitive non-hyperbolic systems, we construct nonhyperbolic ergodic measures with entropy arbitrarily close to its maximal possible value. The systems we consider are partially hyperbolic with one-dimensional central direction for which there are positive entropy ergodic measures whose central Lyapunov exponent is negative, zero, or positive. We construct ergodic measures with zero central Lyapunov exponent whose entropy is positive and arbitrarily close to the topological entropy of the set of points with central Lyapunov exponent zero. This provides a restricted variational principle for nonhyperbolic (zero exponent) ergodic measures. The result is applied to the setting of SL ( 2 , R ) matrix cocycles and provides a counterpart to Furstenberg’s classical result: for an open and dense subset of elliptic SL ( 2 , R ) cocycles we construct ergodic measures with upper Lyapunov exponent zero and with metric entropy arbitrarily close to the topological entropy of the set of infinite matrix products with subexponential growth of the norm.
doi_str_mv 10.1007/s00220-022-04406-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692733282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692733282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3a20639d25cdd5adb14d61b758a9ba00bf0a4e3b8017b2b01fda035e127acdfb3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbpE2n7mQYHzA-wMdOQl4dM9amJi3D_HujFdy5OYcL5ztwD0LHBE4JQHkWASgFnARDngPHmx00ITlLZ0X4LpoAEMCME76PDmJcA0BFOZ-g1xcZnOydb2WTPQTXatc1Nqt9yO58-7btbFC-cTpbhJU3yW-tjEOw8Tx7fLebhHgz6D5msjXZomlc16fQ3Outbmw8RHu1bKI9-vUper5cPM2v8fL-6mZ-scSakarHTFLgrDK00MYU0iiSG05UWcxkpSSAqkHmlqkZkFJRBaQ2ElhhCS2lNrViU3Qy9nbBfw429mLth5BeioLyipaM0RlNKTqmdPAxBluLLrgPGbaCgPieUYwziiTiZ0axSRAboZjC7cqGv-p_qC_Mq3cB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692733282</pqid></control><display><type>article</type><title>Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles</title><source>SpringerLink Journals</source><creator>Díaz, L. J. ; Gelfert, K. ; Rams, M.</creator><creatorcontrib>Díaz, L. J. ; Gelfert, K. ; Rams, M.</creatorcontrib><description>For a large class of transitive non-hyperbolic systems, we construct nonhyperbolic ergodic measures with entropy arbitrarily close to its maximal possible value. The systems we consider are partially hyperbolic with one-dimensional central direction for which there are positive entropy ergodic measures whose central Lyapunov exponent is negative, zero, or positive. We construct ergodic measures with zero central Lyapunov exponent whose entropy is positive and arbitrarily close to the topological entropy of the set of points with central Lyapunov exponent zero. This provides a restricted variational principle for nonhyperbolic (zero exponent) ergodic measures. The result is applied to the setting of SL ( 2 , R ) matrix cocycles and provides a counterpart to Furstenberg’s classical result: for an open and dense subset of elliptic SL ( 2 , R ) cocycles we construct ergodic measures with upper Lyapunov exponent zero and with metric entropy arbitrarily close to the topological entropy of the set of infinite matrix products with subexponential growth of the norm.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04406-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chaos theory ; Classical and Quantum Gravitation ; Complex Systems ; Entropy ; Ergodic processes ; Hyperbolic systems ; Liapunov exponents ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Principles ; Quantum Physics ; Relativity Theory ; Theoretical ; Topology</subject><ispartof>Communications in mathematical physics, 2022-08, Vol.394 (1), p.73-141</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3a20639d25cdd5adb14d61b758a9ba00bf0a4e3b8017b2b01fda035e127acdfb3</citedby><cites>FETCH-LOGICAL-c319t-3a20639d25cdd5adb14d61b758a9ba00bf0a4e3b8017b2b01fda035e127acdfb3</cites><orcidid>0000-0002-5123-4611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-022-04406-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-022-04406-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Díaz, L. J.</creatorcontrib><creatorcontrib>Gelfert, K.</creatorcontrib><creatorcontrib>Rams, M.</creatorcontrib><title>Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>For a large class of transitive non-hyperbolic systems, we construct nonhyperbolic ergodic measures with entropy arbitrarily close to its maximal possible value. The systems we consider are partially hyperbolic with one-dimensional central direction for which there are positive entropy ergodic measures whose central Lyapunov exponent is negative, zero, or positive. We construct ergodic measures with zero central Lyapunov exponent whose entropy is positive and arbitrarily close to the topological entropy of the set of points with central Lyapunov exponent zero. This provides a restricted variational principle for nonhyperbolic (zero exponent) ergodic measures. The result is applied to the setting of SL ( 2 , R ) matrix cocycles and provides a counterpart to Furstenberg’s classical result: for an open and dense subset of elliptic SL ( 2 , R ) cocycles we construct ergodic measures with upper Lyapunov exponent zero and with metric entropy arbitrarily close to the topological entropy of the set of infinite matrix products with subexponential growth of the norm.</description><subject>Chaos theory</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Entropy</subject><subject>Ergodic processes</subject><subject>Hyperbolic systems</subject><subject>Liapunov exponents</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Principles</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><subject>Topology</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbpE2n7mQYHzA-wMdOQl4dM9amJi3D_HujFdy5OYcL5ztwD0LHBE4JQHkWASgFnARDngPHmx00ITlLZ0X4LpoAEMCME76PDmJcA0BFOZ-g1xcZnOydb2WTPQTXatc1Nqt9yO58-7btbFC-cTpbhJU3yW-tjEOw8Tx7fLebhHgz6D5msjXZomlc16fQ3Outbmw8RHu1bKI9-vUper5cPM2v8fL-6mZ-scSakarHTFLgrDK00MYU0iiSG05UWcxkpSSAqkHmlqkZkFJRBaQ2ElhhCS2lNrViU3Qy9nbBfw429mLth5BeioLyipaM0RlNKTqmdPAxBluLLrgPGbaCgPieUYwziiTiZ0axSRAboZjC7cqGv-p_qC_Mq3cB</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Díaz, L. J.</creator><creator>Gelfert, K.</creator><creator>Rams, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5123-4611</orcidid></search><sort><creationdate>20220801</creationdate><title>Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles</title><author>Díaz, L. J. ; Gelfert, K. ; Rams, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3a20639d25cdd5adb14d61b758a9ba00bf0a4e3b8017b2b01fda035e127acdfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chaos theory</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Entropy</topic><topic>Ergodic processes</topic><topic>Hyperbolic systems</topic><topic>Liapunov exponents</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Principles</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz, L. J.</creatorcontrib><creatorcontrib>Gelfert, K.</creatorcontrib><creatorcontrib>Rams, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz, L. J.</au><au>Gelfert, K.</au><au>Rams, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>394</volume><issue>1</issue><spage>73</spage><epage>141</epage><pages>73-141</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>For a large class of transitive non-hyperbolic systems, we construct nonhyperbolic ergodic measures with entropy arbitrarily close to its maximal possible value. The systems we consider are partially hyperbolic with one-dimensional central direction for which there are positive entropy ergodic measures whose central Lyapunov exponent is negative, zero, or positive. We construct ergodic measures with zero central Lyapunov exponent whose entropy is positive and arbitrarily close to the topological entropy of the set of points with central Lyapunov exponent zero. This provides a restricted variational principle for nonhyperbolic (zero exponent) ergodic measures. The result is applied to the setting of SL ( 2 , R ) matrix cocycles and provides a counterpart to Furstenberg’s classical result: for an open and dense subset of elliptic SL ( 2 , R ) cocycles we construct ergodic measures with upper Lyapunov exponent zero and with metric entropy arbitrarily close to the topological entropy of the set of infinite matrix products with subexponential growth of the norm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04406-w</doi><tpages>69</tpages><orcidid>https://orcid.org/0000-0002-5123-4611</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2022-08, Vol.394 (1), p.73-141
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2692733282
source SpringerLink Journals
subjects Chaos theory
Classical and Quantum Gravitation
Complex Systems
Entropy
Ergodic processes
Hyperbolic systems
Liapunov exponents
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Principles
Quantum Physics
Relativity Theory
Theoretical
Topology
title Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Principle%20for%20Nonhyperbolic%20Ergodic%20Measures:%20Skew%20Products%20and%20Elliptic%20Cocycles&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=D%C3%ADaz,%20L.%20J.&rft.date=2022-08-01&rft.volume=394&rft.issue=1&rft.spage=73&rft.epage=141&rft.pages=73-141&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04406-w&rft_dat=%3Cproquest_cross%3E2692733282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692733282&rft_id=info:pmid/&rfr_iscdi=true