Detection of low numbers of bacterial cells in a pharmaceutical drug product using Raman spectroscopy and PLS-DA multivariate analysis

Sterility testing is a laborious and slow process to detect contaminants present in drug products. Raman spectroscopy is a promising label-free tool to detect microorganisms and thus gaining relevance as a future alternative culture-free method for sterility testing in the pharmaceutical industry. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2022-07, Vol.147 (15), p.3593-363
Hauptverfasser: Grosso, R. A, Walther, A. R, Brunbech, E, Sørensen, A, Schebye, B, Olsen, K. E, Qu, H, Hedegaard, M. A. B, Arnspang, E. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 15
container_start_page 3593
container_title Analyst (London)
container_volume 147
creator Grosso, R. A
Walther, A. R
Brunbech, E
Sørensen, A
Schebye, B
Olsen, K. E
Qu, H
Hedegaard, M. A. B
Arnspang, E. C
description Sterility testing is a laborious and slow process to detect contaminants present in drug products. Raman spectroscopy is a promising label-free tool to detect microorganisms and thus gaining relevance as a future alternative culture-free method for sterility testing in the pharmaceutical industry. However, reaching detection limits similar to standard procedures while keeping a high accuracy remains challenging, due to weak bacterial Raman signals. In this work, we show a new non-invasive approach focusing on detection of different bacteria in concentrations below 100 CFU per ml within drug product containers using Raman spectroscopy and multivariate data analysis. Even though Raman spectra from drug product with and without bacteria are similar, a partial least squared discriminant analysis (PLS-DA) model shows great performance to distinguish samples with bacterial contaminants in concentrations down to 10 CFU per ml. We used spiked samples with bacterial spores for model validation achieving a detection accuracy of 99%. Our results indicate the great potential of this rapid, and cost-effective approach to be used in quality control in the pharmaceutical industry. Fast and non-invasive approach to detect drug product (DP) samples with low numbers of bacteria within the primary packaging. The method combines Raman spectroscopy and partial least squared discriminant analysis (RS-PLS-DA).
doi_str_mv 10.1039/d2an00683a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2692692842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689053719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-ca589d07ec235cdcbfa71255c69d35d8b8189bac5382fce7d45e02570e9639bd3</originalsourceid><addsrcrecordid>eNpdkVtr3DAQhUVIoZtNX_oeEOQlBNzIkmVLj0s2l8LSll6ezViSN1p8iy4J-wf6uytnQwOBgWFmPg5nOAh9zsmXnDB5pSkMhJSCwRFa5KwsMs6pOEYLQgjLaMmLj-jE-10ac8LJAv1dm2BUsOOAxxZ34zMeYt8Y5-exARWMs9BhZbrOYztgwNMDuB6UicGqdNEubvHkRh1VwNHbYYt_Qg8D9lPSdaNX47THMGj8Y_MrW69wH7tgnyDJBpP20O299afoQwudN59e-xL9ub35fX2fbb7ffb1ebTLFOAmZAi6kJpVRlHGlVdNClVPOVSk141o0IhcyueZM0FaZShfcEMorYmTJZKPZEl0cdJPjx2h8qHvr5-dgMGP0NS2FJJxVuUzo-Tt0N0aX_M6UnEsUNFGXB0qlV70zbT0524Pb1zmp50jqNV19e4lkleCzA-y8-s-9Rcb-AUqnid4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692692842</pqid></control><display><type>article</type><title>Detection of low numbers of bacterial cells in a pharmaceutical drug product using Raman spectroscopy and PLS-DA multivariate analysis</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Grosso, R. A ; Walther, A. R ; Brunbech, E ; Sørensen, A ; Schebye, B ; Olsen, K. E ; Qu, H ; Hedegaard, M. A. B ; Arnspang, E. C</creator><creatorcontrib>Grosso, R. A ; Walther, A. R ; Brunbech, E ; Sørensen, A ; Schebye, B ; Olsen, K. E ; Qu, H ; Hedegaard, M. A. B ; Arnspang, E. C</creatorcontrib><description>Sterility testing is a laborious and slow process to detect contaminants present in drug products. Raman spectroscopy is a promising label-free tool to detect microorganisms and thus gaining relevance as a future alternative culture-free method for sterility testing in the pharmaceutical industry. However, reaching detection limits similar to standard procedures while keeping a high accuracy remains challenging, due to weak bacterial Raman signals. In this work, we show a new non-invasive approach focusing on detection of different bacteria in concentrations below 100 CFU per ml within drug product containers using Raman spectroscopy and multivariate data analysis. Even though Raman spectra from drug product with and without bacteria are similar, a partial least squared discriminant analysis (PLS-DA) model shows great performance to distinguish samples with bacterial contaminants in concentrations down to 10 CFU per ml. We used spiked samples with bacterial spores for model validation achieving a detection accuracy of 99%. Our results indicate the great potential of this rapid, and cost-effective approach to be used in quality control in the pharmaceutical industry. Fast and non-invasive approach to detect drug product (DP) samples with low numbers of bacteria within the primary packaging. The method combines Raman spectroscopy and partial least squared discriminant analysis (RS-PLS-DA).</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/d2an00683a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Bacteria ; Contaminants ; Data analysis ; Discriminant analysis ; Microorganisms ; Multivariate analysis ; Pharmaceutical industry ; Pharmaceuticals ; Quality control ; Raman spectra ; Raman spectroscopy ; Spectroscopic analysis ; Spectrum analysis ; Spores</subject><ispartof>Analyst (London), 2022-07, Vol.147 (15), p.3593-363</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-ca589d07ec235cdcbfa71255c69d35d8b8189bac5382fce7d45e02570e9639bd3</citedby><cites>FETCH-LOGICAL-c350t-ca589d07ec235cdcbfa71255c69d35d8b8189bac5382fce7d45e02570e9639bd3</cites><orcidid>0000-0003-3528-3250 ; 0000-0002-2831-6870 ; 0000-0002-3095-4070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,2819,27901,27902</link.rule.ids></links><search><creatorcontrib>Grosso, R. A</creatorcontrib><creatorcontrib>Walther, A. R</creatorcontrib><creatorcontrib>Brunbech, E</creatorcontrib><creatorcontrib>Sørensen, A</creatorcontrib><creatorcontrib>Schebye, B</creatorcontrib><creatorcontrib>Olsen, K. E</creatorcontrib><creatorcontrib>Qu, H</creatorcontrib><creatorcontrib>Hedegaard, M. A. B</creatorcontrib><creatorcontrib>Arnspang, E. C</creatorcontrib><title>Detection of low numbers of bacterial cells in a pharmaceutical drug product using Raman spectroscopy and PLS-DA multivariate analysis</title><title>Analyst (London)</title><description>Sterility testing is a laborious and slow process to detect contaminants present in drug products. Raman spectroscopy is a promising label-free tool to detect microorganisms and thus gaining relevance as a future alternative culture-free method for sterility testing in the pharmaceutical industry. However, reaching detection limits similar to standard procedures while keeping a high accuracy remains challenging, due to weak bacterial Raman signals. In this work, we show a new non-invasive approach focusing on detection of different bacteria in concentrations below 100 CFU per ml within drug product containers using Raman spectroscopy and multivariate data analysis. Even though Raman spectra from drug product with and without bacteria are similar, a partial least squared discriminant analysis (PLS-DA) model shows great performance to distinguish samples with bacterial contaminants in concentrations down to 10 CFU per ml. We used spiked samples with bacterial spores for model validation achieving a detection accuracy of 99%. Our results indicate the great potential of this rapid, and cost-effective approach to be used in quality control in the pharmaceutical industry. Fast and non-invasive approach to detect drug product (DP) samples with low numbers of bacteria within the primary packaging. The method combines Raman spectroscopy and partial least squared discriminant analysis (RS-PLS-DA).</description><subject>Bacteria</subject><subject>Contaminants</subject><subject>Data analysis</subject><subject>Discriminant analysis</subject><subject>Microorganisms</subject><subject>Multivariate analysis</subject><subject>Pharmaceutical industry</subject><subject>Pharmaceuticals</subject><subject>Quality control</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Spores</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkVtr3DAQhUVIoZtNX_oeEOQlBNzIkmVLj0s2l8LSll6ezViSN1p8iy4J-wf6uytnQwOBgWFmPg5nOAh9zsmXnDB5pSkMhJSCwRFa5KwsMs6pOEYLQgjLaMmLj-jE-10ac8LJAv1dm2BUsOOAxxZ34zMeYt8Y5-exARWMs9BhZbrOYztgwNMDuB6UicGqdNEubvHkRh1VwNHbYYt_Qg8D9lPSdaNX47THMGj8Y_MrW69wH7tgnyDJBpP20O299afoQwudN59e-xL9ub35fX2fbb7ffb1ebTLFOAmZAi6kJpVRlHGlVdNClVPOVSk141o0IhcyueZM0FaZShfcEMorYmTJZKPZEl0cdJPjx2h8qHvr5-dgMGP0NS2FJJxVuUzo-Tt0N0aX_M6UnEsUNFGXB0qlV70zbT0524Pb1zmp50jqNV19e4lkleCzA-y8-s-9Rcb-AUqnid4</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Grosso, R. A</creator><creator>Walther, A. R</creator><creator>Brunbech, E</creator><creator>Sørensen, A</creator><creator>Schebye, B</creator><creator>Olsen, K. E</creator><creator>Qu, H</creator><creator>Hedegaard, M. A. B</creator><creator>Arnspang, E. C</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3528-3250</orcidid><orcidid>https://orcid.org/0000-0002-2831-6870</orcidid><orcidid>https://orcid.org/0000-0002-3095-4070</orcidid></search><sort><creationdate>20220722</creationdate><title>Detection of low numbers of bacterial cells in a pharmaceutical drug product using Raman spectroscopy and PLS-DA multivariate analysis</title><author>Grosso, R. A ; Walther, A. R ; Brunbech, E ; Sørensen, A ; Schebye, B ; Olsen, K. E ; Qu, H ; Hedegaard, M. A. B ; Arnspang, E. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-ca589d07ec235cdcbfa71255c69d35d8b8189bac5382fce7d45e02570e9639bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacteria</topic><topic>Contaminants</topic><topic>Data analysis</topic><topic>Discriminant analysis</topic><topic>Microorganisms</topic><topic>Multivariate analysis</topic><topic>Pharmaceutical industry</topic><topic>Pharmaceuticals</topic><topic>Quality control</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Spores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosso, R. A</creatorcontrib><creatorcontrib>Walther, A. R</creatorcontrib><creatorcontrib>Brunbech, E</creatorcontrib><creatorcontrib>Sørensen, A</creatorcontrib><creatorcontrib>Schebye, B</creatorcontrib><creatorcontrib>Olsen, K. E</creatorcontrib><creatorcontrib>Qu, H</creatorcontrib><creatorcontrib>Hedegaard, M. A. B</creatorcontrib><creatorcontrib>Arnspang, E. C</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosso, R. A</au><au>Walther, A. R</au><au>Brunbech, E</au><au>Sørensen, A</au><au>Schebye, B</au><au>Olsen, K. E</au><au>Qu, H</au><au>Hedegaard, M. A. B</au><au>Arnspang, E. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of low numbers of bacterial cells in a pharmaceutical drug product using Raman spectroscopy and PLS-DA multivariate analysis</atitle><jtitle>Analyst (London)</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>147</volume><issue>15</issue><spage>3593</spage><epage>363</epage><pages>3593-363</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>Sterility testing is a laborious and slow process to detect contaminants present in drug products. Raman spectroscopy is a promising label-free tool to detect microorganisms and thus gaining relevance as a future alternative culture-free method for sterility testing in the pharmaceutical industry. However, reaching detection limits similar to standard procedures while keeping a high accuracy remains challenging, due to weak bacterial Raman signals. In this work, we show a new non-invasive approach focusing on detection of different bacteria in concentrations below 100 CFU per ml within drug product containers using Raman spectroscopy and multivariate data analysis. Even though Raman spectra from drug product with and without bacteria are similar, a partial least squared discriminant analysis (PLS-DA) model shows great performance to distinguish samples with bacterial contaminants in concentrations down to 10 CFU per ml. We used spiked samples with bacterial spores for model validation achieving a detection accuracy of 99%. Our results indicate the great potential of this rapid, and cost-effective approach to be used in quality control in the pharmaceutical industry. Fast and non-invasive approach to detect drug product (DP) samples with low numbers of bacteria within the primary packaging. The method combines Raman spectroscopy and partial least squared discriminant analysis (RS-PLS-DA).</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2an00683a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3528-3250</orcidid><orcidid>https://orcid.org/0000-0002-2831-6870</orcidid><orcidid>https://orcid.org/0000-0002-3095-4070</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2022-07, Vol.147 (15), p.3593-363
issn 0003-2654
1364-5528
language eng
recordid cdi_proquest_journals_2692692842
source Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bacteria
Contaminants
Data analysis
Discriminant analysis
Microorganisms
Multivariate analysis
Pharmaceutical industry
Pharmaceuticals
Quality control
Raman spectra
Raman spectroscopy
Spectroscopic analysis
Spectrum analysis
Spores
title Detection of low numbers of bacterial cells in a pharmaceutical drug product using Raman spectroscopy and PLS-DA multivariate analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20low%20numbers%20of%20bacterial%20cells%20in%20a%20pharmaceutical%20drug%20product%20using%20Raman%20spectroscopy%20and%20PLS-DA%20multivariate%20analysis&rft.jtitle=Analyst%20(London)&rft.au=Grosso,%20R.%20A&rft.date=2022-07-22&rft.volume=147&rft.issue=15&rft.spage=3593&rft.epage=363&rft.pages=3593-363&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/d2an00683a&rft_dat=%3Cproquest_rsc_p%3E2689053719%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692692842&rft_id=info:pmid/&rfr_iscdi=true