Observing Multisphere Hydrological Changes in the Largest River Basin of the Tibetan Plateau
Upper Brahmaputra (UB) is the largest (~240,000 km²) river basin of the Tibetan Plateau, where hydrological processes are highly sensitive to climate change. However, constrained by difficult access and sparse in situ observations, the variations in precipitation, glaciers, frozen ground, and vegeta...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Meteorological Society 2022-06, Vol.103 (6), p.E1595-E1620 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1620 |
---|---|
container_issue | 6 |
container_start_page | E1595 |
container_title | Bulletin of the American Meteorological Society |
container_volume | 103 |
creator | Wang, Lei Cuo, Lan Luo, Dongliang Su, Fengge Ye, Qinghua Yao, Tandong Zhou, Jing Li, Xiuping Li, Ning Sun, He Liu, Lei Wang, Yuanwei Zeng, Tian Hu, Zhidan Liu, Ruishun Chai, Chenhao Wang, Guangpeng Zhong, Xiaoyang Guo, Xiaoyu Zhao, Haoqiang Zhao, Huabiao Yang, Wei |
description | Upper Brahmaputra (UB) is the largest (~240,000 km²) river basin of the Tibetan Plateau, where hydrological processes are highly sensitive to climate change. However, constrained by difficult access and sparse in situ observations, the variations in precipitation, glaciers, frozen ground, and vegetation across the UB basin remain largely unknown, and consequently the impacts of climate change on streamflow cannot be accurately assessed. To fill this gap, this project aims to establish a basinwide, large-scale observational network (that includes hydrometeorology, glacier, frozen ground, and vegetation observations), which helps quantify the UB runoff processes under climate—cryosphere—vegetation changes. At present, a multisphere observational network has been established throughout the catchment: 1) 12 stations with custom-built weighing automatic rain/snow meters and temperature probes to obtain elevation-dependent gradients; 2) 9 stations with soil moisture/temperature observations at four layers (10, 40, 80, 120 cm) covering Alpine meadow, grasslands, shrub, and forest to measure vegetation (biomass and vegetation types) and soil (physical properties) simultaneously; 3) 34 sets of probes to monitor frozen ground temperatures from 4,500 to 5,200 m elevation (100-m intervals), and two observation systems to monitor water and heat transfer processes in frozen ground at Xuegela (5,278 m) and Mayoumula (5,256 m) Mountains, for improved mapping of permafrost and active layer characteristics; 4) 5 sets of altimetry discharge observations along ungauged cross sections to supplement existing operational gauges; 5) high-precision glacier boundary and ice-surface elevation observations at Namunani Mountain with differential GPS, to supplement existing glacier observations for validating satellite imagery. This network provides an excellent opportunity to monitor UB catchment processes in great detail. |
doi_str_mv | 10.1175/BAMS-D-21-0217.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2692656622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27234989</jstor_id><sourcerecordid>27234989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b4ae656f8c8ffcf485504d4ee8d7d46d88b637ec44b2ffabafdb4bde13acee953</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBWr17ERY8p-5Xks2xH2qFlorWm7DsJrNtSkzqblLov3djxcsMb-a9N8ND6JaSEaVp_DAZL9-jWcRoRBhNR_QMDWjMSEREmp6jASGER6Gkl-jK-10PuaQD9LkyHtyhrDd42VVt6fdbcIDnx8I1VbMpc13h6VbXG_C4rHG7BbzQLqAWv5UHcHiifZg39ne1Lg20usavlW5Bd9fowurKw81fH6KPp8f1dB4tVs8v0_EiyjmP28gIDUmcWJlLa3MrZBwTUQgAWaSFSAopTcJTyIUwzFpttC2MMAVQrnOALOZDdH_y3bvmuwu_qV3TuTqcVCzJWPBOGAsscmLlrvHegVV7V35pd1SUqD5D1WeoZopR1WeoaJDcnSQ73zbun89SxkUmM_4D5plwCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692656622</pqid></control><display><type>article</type><title>Observing Multisphere Hydrological Changes in the Largest River Basin of the Tibetan Plateau</title><source>American Meteorological Society</source><source>EZB Electronic Journals Library</source><creator>Wang, Lei ; Cuo, Lan ; Luo, Dongliang ; Su, Fengge ; Ye, Qinghua ; Yao, Tandong ; Zhou, Jing ; Li, Xiuping ; Li, Ning ; Sun, He ; Liu, Lei ; Wang, Yuanwei ; Zeng, Tian ; Hu, Zhidan ; Liu, Ruishun ; Chai, Chenhao ; Wang, Guangpeng ; Zhong, Xiaoyang ; Guo, Xiaoyu ; Zhao, Haoqiang ; Zhao, Huabiao ; Yang, Wei</creator><creatorcontrib>Wang, Lei ; Cuo, Lan ; Luo, Dongliang ; Su, Fengge ; Ye, Qinghua ; Yao, Tandong ; Zhou, Jing ; Li, Xiuping ; Li, Ning ; Sun, He ; Liu, Lei ; Wang, Yuanwei ; Zeng, Tian ; Hu, Zhidan ; Liu, Ruishun ; Chai, Chenhao ; Wang, Guangpeng ; Zhong, Xiaoyang ; Guo, Xiaoyu ; Zhao, Haoqiang ; Zhao, Huabiao ; Yang, Wei</creatorcontrib><description>Upper Brahmaputra (UB) is the largest (~240,000 km²) river basin of the Tibetan Plateau, where hydrological processes are highly sensitive to climate change. However, constrained by difficult access and sparse in situ observations, the variations in precipitation, glaciers, frozen ground, and vegetation across the UB basin remain largely unknown, and consequently the impacts of climate change on streamflow cannot be accurately assessed. To fill this gap, this project aims to establish a basinwide, large-scale observational network (that includes hydrometeorology, glacier, frozen ground, and vegetation observations), which helps quantify the UB runoff processes under climate—cryosphere—vegetation changes. At present, a multisphere observational network has been established throughout the catchment: 1) 12 stations with custom-built weighing automatic rain/snow meters and temperature probes to obtain elevation-dependent gradients; 2) 9 stations with soil moisture/temperature observations at four layers (10, 40, 80, 120 cm) covering Alpine meadow, grasslands, shrub, and forest to measure vegetation (biomass and vegetation types) and soil (physical properties) simultaneously; 3) 34 sets of probes to monitor frozen ground temperatures from 4,500 to 5,200 m elevation (100-m intervals), and two observation systems to monitor water and heat transfer processes in frozen ground at Xuegela (5,278 m) and Mayoumula (5,256 m) Mountains, for improved mapping of permafrost and active layer characteristics; 4) 5 sets of altimetry discharge observations along ungauged cross sections to supplement existing operational gauges; 5) high-precision glacier boundary and ice-surface elevation observations at Namunani Mountain with differential GPS, to supplement existing glacier observations for validating satellite imagery. This network provides an excellent opportunity to monitor UB catchment processes in great detail.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-21-0217.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Active layer ; Altimetry ; Basins ; Catchment area ; Climate and vegetation ; Climate change ; Cryosphere ; Differential global positioning system ; Elevation ; Environmental impact ; Frozen ground ; Gauges ; Glacier variations ; Glaciers ; Glaciohydrology ; Global positioning systems ; GPS ; Grasslands ; Ground temperatures ; Heat transfer ; Hydrologic processes ; Hydrology ; Hydrometeorology ; Measuring instruments ; Moisture effects ; Monitoring systems ; Mountains ; Permafrost ; Physical properties ; Precipitation ; Precipitation variations ; Probes ; Research centers ; River basins ; Rivers ; Runoff ; Satellite imagery ; Satellite observation ; Sensors ; Soil ; Soil moisture ; Soil properties ; Soil temperature ; Stream discharge ; Stream flow ; Temperature ; Vegetation ; Vegetation changes ; Water monitoring ; Wind</subject><ispartof>Bulletin of the American Meteorological Society, 2022-06, Vol.103 (6), p.E1595-E1620</ispartof><rights>2022 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jun 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b4ae656f8c8ffcf485504d4ee8d7d46d88b637ec44b2ffabafdb4bde13acee953</citedby><cites>FETCH-LOGICAL-c335t-b4ae656f8c8ffcf485504d4ee8d7d46d88b637ec44b2ffabafdb4bde13acee953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Cuo, Lan</creatorcontrib><creatorcontrib>Luo, Dongliang</creatorcontrib><creatorcontrib>Su, Fengge</creatorcontrib><creatorcontrib>Ye, Qinghua</creatorcontrib><creatorcontrib>Yao, Tandong</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Li, Xiuping</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Sun, He</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Wang, Yuanwei</creatorcontrib><creatorcontrib>Zeng, Tian</creatorcontrib><creatorcontrib>Hu, Zhidan</creatorcontrib><creatorcontrib>Liu, Ruishun</creatorcontrib><creatorcontrib>Chai, Chenhao</creatorcontrib><creatorcontrib>Wang, Guangpeng</creatorcontrib><creatorcontrib>Zhong, Xiaoyang</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Zhao, Haoqiang</creatorcontrib><creatorcontrib>Zhao, Huabiao</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><title>Observing Multisphere Hydrological Changes in the Largest River Basin of the Tibetan Plateau</title><title>Bulletin of the American Meteorological Society</title><description>Upper Brahmaputra (UB) is the largest (~240,000 km²) river basin of the Tibetan Plateau, where hydrological processes are highly sensitive to climate change. However, constrained by difficult access and sparse in situ observations, the variations in precipitation, glaciers, frozen ground, and vegetation across the UB basin remain largely unknown, and consequently the impacts of climate change on streamflow cannot be accurately assessed. To fill this gap, this project aims to establish a basinwide, large-scale observational network (that includes hydrometeorology, glacier, frozen ground, and vegetation observations), which helps quantify the UB runoff processes under climate—cryosphere—vegetation changes. At present, a multisphere observational network has been established throughout the catchment: 1) 12 stations with custom-built weighing automatic rain/snow meters and temperature probes to obtain elevation-dependent gradients; 2) 9 stations with soil moisture/temperature observations at four layers (10, 40, 80, 120 cm) covering Alpine meadow, grasslands, shrub, and forest to measure vegetation (biomass and vegetation types) and soil (physical properties) simultaneously; 3) 34 sets of probes to monitor frozen ground temperatures from 4,500 to 5,200 m elevation (100-m intervals), and two observation systems to monitor water and heat transfer processes in frozen ground at Xuegela (5,278 m) and Mayoumula (5,256 m) Mountains, for improved mapping of permafrost and active layer characteristics; 4) 5 sets of altimetry discharge observations along ungauged cross sections to supplement existing operational gauges; 5) high-precision glacier boundary and ice-surface elevation observations at Namunani Mountain with differential GPS, to supplement existing glacier observations for validating satellite imagery. This network provides an excellent opportunity to monitor UB catchment processes in great detail.</description><subject>Active layer</subject><subject>Altimetry</subject><subject>Basins</subject><subject>Catchment area</subject><subject>Climate and vegetation</subject><subject>Climate change</subject><subject>Cryosphere</subject><subject>Differential global positioning system</subject><subject>Elevation</subject><subject>Environmental impact</subject><subject>Frozen ground</subject><subject>Gauges</subject><subject>Glacier variations</subject><subject>Glaciers</subject><subject>Glaciohydrology</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Grasslands</subject><subject>Ground temperatures</subject><subject>Heat transfer</subject><subject>Hydrologic processes</subject><subject>Hydrology</subject><subject>Hydrometeorology</subject><subject>Measuring instruments</subject><subject>Moisture effects</subject><subject>Monitoring systems</subject><subject>Mountains</subject><subject>Permafrost</subject><subject>Physical properties</subject><subject>Precipitation</subject><subject>Precipitation variations</subject><subject>Probes</subject><subject>Research centers</subject><subject>River basins</subject><subject>Rivers</subject><subject>Runoff</subject><subject>Satellite imagery</subject><subject>Satellite observation</subject><subject>Sensors</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Soil properties</subject><subject>Soil temperature</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Temperature</subject><subject>Vegetation</subject><subject>Vegetation changes</subject><subject>Water monitoring</subject><subject>Wind</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UE1Lw0AQXUTBWr17ERY8p-5Xks2xH2qFlorWm7DsJrNtSkzqblLov3djxcsMb-a9N8ND6JaSEaVp_DAZL9-jWcRoRBhNR_QMDWjMSEREmp6jASGER6Gkl-jK-10PuaQD9LkyHtyhrDd42VVt6fdbcIDnx8I1VbMpc13h6VbXG_C4rHG7BbzQLqAWv5UHcHiifZg39ne1Lg20usavlW5Bd9fowurKw81fH6KPp8f1dB4tVs8v0_EiyjmP28gIDUmcWJlLa3MrZBwTUQgAWaSFSAopTcJTyIUwzFpttC2MMAVQrnOALOZDdH_y3bvmuwu_qV3TuTqcVCzJWPBOGAsscmLlrvHegVV7V35pd1SUqD5D1WeoZopR1WeoaJDcnSQ73zbun89SxkUmM_4D5plwCA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wang, Lei</creator><creator>Cuo, Lan</creator><creator>Luo, Dongliang</creator><creator>Su, Fengge</creator><creator>Ye, Qinghua</creator><creator>Yao, Tandong</creator><creator>Zhou, Jing</creator><creator>Li, Xiuping</creator><creator>Li, Ning</creator><creator>Sun, He</creator><creator>Liu, Lei</creator><creator>Wang, Yuanwei</creator><creator>Zeng, Tian</creator><creator>Hu, Zhidan</creator><creator>Liu, Ruishun</creator><creator>Chai, Chenhao</creator><creator>Wang, Guangpeng</creator><creator>Zhong, Xiaoyang</creator><creator>Guo, Xiaoyu</creator><creator>Zhao, Haoqiang</creator><creator>Zhao, Huabiao</creator><creator>Yang, Wei</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20220601</creationdate><title>Observing Multisphere Hydrological Changes in the Largest River Basin of the Tibetan Plateau</title><author>Wang, Lei ; Cuo, Lan ; Luo, Dongliang ; Su, Fengge ; Ye, Qinghua ; Yao, Tandong ; Zhou, Jing ; Li, Xiuping ; Li, Ning ; Sun, He ; Liu, Lei ; Wang, Yuanwei ; Zeng, Tian ; Hu, Zhidan ; Liu, Ruishun ; Chai, Chenhao ; Wang, Guangpeng ; Zhong, Xiaoyang ; Guo, Xiaoyu ; Zhao, Haoqiang ; Zhao, Huabiao ; Yang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b4ae656f8c8ffcf485504d4ee8d7d46d88b637ec44b2ffabafdb4bde13acee953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active layer</topic><topic>Altimetry</topic><topic>Basins</topic><topic>Catchment area</topic><topic>Climate and vegetation</topic><topic>Climate change</topic><topic>Cryosphere</topic><topic>Differential global positioning system</topic><topic>Elevation</topic><topic>Environmental impact</topic><topic>Frozen ground</topic><topic>Gauges</topic><topic>Glacier variations</topic><topic>Glaciers</topic><topic>Glaciohydrology</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Grasslands</topic><topic>Ground temperatures</topic><topic>Heat transfer</topic><topic>Hydrologic processes</topic><topic>Hydrology</topic><topic>Hydrometeorology</topic><topic>Measuring instruments</topic><topic>Moisture effects</topic><topic>Monitoring systems</topic><topic>Mountains</topic><topic>Permafrost</topic><topic>Physical properties</topic><topic>Precipitation</topic><topic>Precipitation variations</topic><topic>Probes</topic><topic>Research centers</topic><topic>River basins</topic><topic>Rivers</topic><topic>Runoff</topic><topic>Satellite imagery</topic><topic>Satellite observation</topic><topic>Sensors</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Soil properties</topic><topic>Soil temperature</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Temperature</topic><topic>Vegetation</topic><topic>Vegetation changes</topic><topic>Water monitoring</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Cuo, Lan</creatorcontrib><creatorcontrib>Luo, Dongliang</creatorcontrib><creatorcontrib>Su, Fengge</creatorcontrib><creatorcontrib>Ye, Qinghua</creatorcontrib><creatorcontrib>Yao, Tandong</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Li, Xiuping</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Sun, He</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Wang, Yuanwei</creatorcontrib><creatorcontrib>Zeng, Tian</creatorcontrib><creatorcontrib>Hu, Zhidan</creatorcontrib><creatorcontrib>Liu, Ruishun</creatorcontrib><creatorcontrib>Chai, Chenhao</creatorcontrib><creatorcontrib>Wang, Guangpeng</creatorcontrib><creatorcontrib>Zhong, Xiaoyang</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Zhao, Haoqiang</creatorcontrib><creatorcontrib>Zhao, Huabiao</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Cuo, Lan</au><au>Luo, Dongliang</au><au>Su, Fengge</au><au>Ye, Qinghua</au><au>Yao, Tandong</au><au>Zhou, Jing</au><au>Li, Xiuping</au><au>Li, Ning</au><au>Sun, He</au><au>Liu, Lei</au><au>Wang, Yuanwei</au><au>Zeng, Tian</au><au>Hu, Zhidan</au><au>Liu, Ruishun</au><au>Chai, Chenhao</au><au>Wang, Guangpeng</au><au>Zhong, Xiaoyang</au><au>Guo, Xiaoyu</au><au>Zhao, Haoqiang</au><au>Zhao, Huabiao</au><au>Yang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing Multisphere Hydrological Changes in the Largest River Basin of the Tibetan Plateau</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>103</volume><issue>6</issue><spage>E1595</spage><epage>E1620</epage><pages>E1595-E1620</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>Upper Brahmaputra (UB) is the largest (~240,000 km²) river basin of the Tibetan Plateau, where hydrological processes are highly sensitive to climate change. However, constrained by difficult access and sparse in situ observations, the variations in precipitation, glaciers, frozen ground, and vegetation across the UB basin remain largely unknown, and consequently the impacts of climate change on streamflow cannot be accurately assessed. To fill this gap, this project aims to establish a basinwide, large-scale observational network (that includes hydrometeorology, glacier, frozen ground, and vegetation observations), which helps quantify the UB runoff processes under climate—cryosphere—vegetation changes. At present, a multisphere observational network has been established throughout the catchment: 1) 12 stations with custom-built weighing automatic rain/snow meters and temperature probes to obtain elevation-dependent gradients; 2) 9 stations with soil moisture/temperature observations at four layers (10, 40, 80, 120 cm) covering Alpine meadow, grasslands, shrub, and forest to measure vegetation (biomass and vegetation types) and soil (physical properties) simultaneously; 3) 34 sets of probes to monitor frozen ground temperatures from 4,500 to 5,200 m elevation (100-m intervals), and two observation systems to monitor water and heat transfer processes in frozen ground at Xuegela (5,278 m) and Mayoumula (5,256 m) Mountains, for improved mapping of permafrost and active layer characteristics; 4) 5 sets of altimetry discharge observations along ungauged cross sections to supplement existing operational gauges; 5) high-precision glacier boundary and ice-surface elevation observations at Namunani Mountain with differential GPS, to supplement existing glacier observations for validating satellite imagery. This network provides an excellent opportunity to monitor UB catchment processes in great detail.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-21-0217.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0007 |
ispartof | Bulletin of the American Meteorological Society, 2022-06, Vol.103 (6), p.E1595-E1620 |
issn | 0003-0007 1520-0477 |
language | eng |
recordid | cdi_proquest_journals_2692656622 |
source | American Meteorological Society; EZB Electronic Journals Library |
subjects | Active layer Altimetry Basins Catchment area Climate and vegetation Climate change Cryosphere Differential global positioning system Elevation Environmental impact Frozen ground Gauges Glacier variations Glaciers Glaciohydrology Global positioning systems GPS Grasslands Ground temperatures Heat transfer Hydrologic processes Hydrology Hydrometeorology Measuring instruments Moisture effects Monitoring systems Mountains Permafrost Physical properties Precipitation Precipitation variations Probes Research centers River basins Rivers Runoff Satellite imagery Satellite observation Sensors Soil Soil moisture Soil properties Soil temperature Stream discharge Stream flow Temperature Vegetation Vegetation changes Water monitoring Wind |
title | Observing Multisphere Hydrological Changes in the Largest River Basin of the Tibetan Plateau |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20Multisphere%20Hydrological%20Changes%20in%20the%20Largest%20River%20Basin%20of%20the%20Tibetan%20Plateau&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Wang,%20Lei&rft.date=2022-06-01&rft.volume=103&rft.issue=6&rft.spage=E1595&rft.epage=E1620&rft.pages=E1595-E1620&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-21-0217.1&rft_dat=%3Cjstor_proqu%3E27234989%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692656622&rft_id=info:pmid/&rft_jstor_id=27234989&rfr_iscdi=true |