Shallow anatomy of hydrothermal systems controlled by the Liquiñe-Ofqui Fault System and the Andean Transverse Faults: Geophysical imaging of fluid pathways and practical implications for geothermal exploration

•We combined ERT, nakamura's method, and geological mapping to localize thermal water.•Hotspring's thermal water is fed by vertical conduits aligned with local faults.•Significant amount of hot water is dispersed in horizontal bodies within sediments.•The hydrothermal systems are twice lon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geothermics 2022-09, Vol.104, p.102435, Article 102435
Hauptverfasser: Pérez-Estay, N., Molina-Piernas, E., Roquer, T., Aravena, D., Araya Vargas, J., Morata, D., Arancibia, G., Valdenegro, P., García, K., Elizalde, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102435
container_title Geothermics
container_volume 104
creator Pérez-Estay, N.
Molina-Piernas, E.
Roquer, T.
Aravena, D.
Araya Vargas, J.
Morata, D.
Arancibia, G.
Valdenegro, P.
García, K.
Elizalde, D.
description •We combined ERT, nakamura's method, and geological mapping to localize thermal water.•Hotspring's thermal water is fed by vertical conduits aligned with local faults.•Significant amount of hot water is dispersed in horizontal bodies within sediments.•The hydrothermal systems are twice longer within sediments than the hotspring area.•We present a model of the shallow anatomy of fault-controlled hydrothermal systems. We combined geoelectric and seismic ambient noise methods to image the shallow depth (
doi_str_mv 10.1016/j.geothermics.2022.102435
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692291572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375650522000864</els_id><sourcerecordid>2692291572</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-1a62f21fd809cbb9cfb41b9c717089612a8f5f3719d860b7b5109bbfe0716313</originalsourceid><addsrcrecordid>eNqNUUFu2zAQJIIGqJv0Dwx6lktSkSj1FhhNWsBADvGdoKilRYMmFZJKqmf1DX1CP1TaSoEee9rFzuwMBoPQDSVrSmj9-bDeg08DhKNRcc0IY_nObsvqAq1ow9uirHj9Dq1Iyauirkj1Hn2I8UAI4RUnK_T7aZDW-lcsnUz-OGOv8TD3YdGUFsc5JjhGrLxLwVsLPe5mnFG8Nc-T-fUTikedF3wvJ5vw05me1foz5871IB3eBeniC4QICy1-wQ_gx2GORmUPc5R74_Ynb20n0-NRpuFVzvGsMwap0htvtHlJxruItQ_4b_aMwY_R-nDGrtGlljbCx7d5hXb3X3ebb8X28eH75m5bSNbwVFBZM82o7hvSqq5rle5uaR6cctK0NWWy0ZUuOW37piYd7ypK2q7TQDitS1peoU-L7Bj88wQxiYOfgsuOgtUtYy2tOMusdmGp4GMMoMUYct4wC0rEqUJxEP9UKE4ViqXC_LtZfiGneDEQRFQGnILeBFBJ9N78h8of7NCx-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692291572</pqid></control><display><type>article</type><title>Shallow anatomy of hydrothermal systems controlled by the Liquiñe-Ofqui Fault System and the Andean Transverse Faults: Geophysical imaging of fluid pathways and practical implications for geothermal exploration</title><source>Access via ScienceDirect (Elsevier)</source><creator>Pérez-Estay, N. ; Molina-Piernas, E. ; Roquer, T. ; Aravena, D. ; Araya Vargas, J. ; Morata, D. ; Arancibia, G. ; Valdenegro, P. ; García, K. ; Elizalde, D.</creator><creatorcontrib>Pérez-Estay, N. ; Molina-Piernas, E. ; Roquer, T. ; Aravena, D. ; Araya Vargas, J. ; Morata, D. ; Arancibia, G. ; Valdenegro, P. ; García, K. ; Elizalde, D.</creatorcontrib><description>•We combined ERT, nakamura's method, and geological mapping to localize thermal water.•Hotspring's thermal water is fed by vertical conduits aligned with local faults.•Significant amount of hot water is dispersed in horizontal bodies within sediments.•The hydrothermal systems are twice longer within sediments than the hotspring area.•We present a model of the shallow anatomy of fault-controlled hydrothermal systems. We combined geoelectric and seismic ambient noise methods to image the shallow depth (&lt;30 m) distribution of thermal waters in two fault-controlled hydrothermal systems located in southern Chile. The bedrock depth was constrained with seismics, while hotsprings and mapped faults were imaged by low-electrical-resistivity domains (&lt;160 Ωm) defined with electrical resistivity tomographies (ERT). The distribution and shape of low-resistivity-domains suggest that thermal fluids follow complex pathways, including deep vertical conduits hosted in fractured rock and shallow horizontal bodies hosted in sediments. These results indicate that the studied hydrothermal systems are at least twice longer within the sediments than the superficial area covered by hotsprings. [Display omitted]</description><identifier>ISSN: 0375-6505</identifier><identifier>EISSN: 1879-3576</identifier><identifier>DOI: 10.1016/j.geothermics.2022.102435</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Andean transverse faults ; Archie's law ; Bedrock ; Domains ; Electrical raceways ; Electrical resistivity ; Electrical resistivity tomography ; Geoelectricity ; Geothermal power ; Geothermal resources ; Hydrothermal systems ; Liquiñe-ofqui fault system ; Sediments ; Shallow hydrothermal systems ; Southern andes ; Thermal water</subject><ispartof>Geothermics, 2022-09, Vol.104, p.102435, Article 102435</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Sep 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a287t-1a62f21fd809cbb9cfb41b9c717089612a8f5f3719d860b7b5109bbfe0716313</citedby><cites>FETCH-LOGICAL-a287t-1a62f21fd809cbb9cfb41b9c717089612a8f5f3719d860b7b5109bbfe0716313</cites><orcidid>0000-0002-9966-168X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geothermics.2022.102435$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Pérez-Estay, N.</creatorcontrib><creatorcontrib>Molina-Piernas, E.</creatorcontrib><creatorcontrib>Roquer, T.</creatorcontrib><creatorcontrib>Aravena, D.</creatorcontrib><creatorcontrib>Araya Vargas, J.</creatorcontrib><creatorcontrib>Morata, D.</creatorcontrib><creatorcontrib>Arancibia, G.</creatorcontrib><creatorcontrib>Valdenegro, P.</creatorcontrib><creatorcontrib>García, K.</creatorcontrib><creatorcontrib>Elizalde, D.</creatorcontrib><title>Shallow anatomy of hydrothermal systems controlled by the Liquiñe-Ofqui Fault System and the Andean Transverse Faults: Geophysical imaging of fluid pathways and practical implications for geothermal exploration</title><title>Geothermics</title><description>•We combined ERT, nakamura's method, and geological mapping to localize thermal water.•Hotspring's thermal water is fed by vertical conduits aligned with local faults.•Significant amount of hot water is dispersed in horizontal bodies within sediments.•The hydrothermal systems are twice longer within sediments than the hotspring area.•We present a model of the shallow anatomy of fault-controlled hydrothermal systems. We combined geoelectric and seismic ambient noise methods to image the shallow depth (&lt;30 m) distribution of thermal waters in two fault-controlled hydrothermal systems located in southern Chile. The bedrock depth was constrained with seismics, while hotsprings and mapped faults were imaged by low-electrical-resistivity domains (&lt;160 Ωm) defined with electrical resistivity tomographies (ERT). The distribution and shape of low-resistivity-domains suggest that thermal fluids follow complex pathways, including deep vertical conduits hosted in fractured rock and shallow horizontal bodies hosted in sediments. These results indicate that the studied hydrothermal systems are at least twice longer within the sediments than the superficial area covered by hotsprings. [Display omitted]</description><subject>Andean transverse faults</subject><subject>Archie's law</subject><subject>Bedrock</subject><subject>Domains</subject><subject>Electrical raceways</subject><subject>Electrical resistivity</subject><subject>Electrical resistivity tomography</subject><subject>Geoelectricity</subject><subject>Geothermal power</subject><subject>Geothermal resources</subject><subject>Hydrothermal systems</subject><subject>Liquiñe-ofqui fault system</subject><subject>Sediments</subject><subject>Shallow hydrothermal systems</subject><subject>Southern andes</subject><subject>Thermal water</subject><issn>0375-6505</issn><issn>1879-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUUFu2zAQJIIGqJv0Dwx6lktSkSj1FhhNWsBADvGdoKilRYMmFZJKqmf1DX1CP1TaSoEee9rFzuwMBoPQDSVrSmj9-bDeg08DhKNRcc0IY_nObsvqAq1ow9uirHj9Dq1Iyauirkj1Hn2I8UAI4RUnK_T7aZDW-lcsnUz-OGOv8TD3YdGUFsc5JjhGrLxLwVsLPe5mnFG8Nc-T-fUTikedF3wvJ5vw05me1foz5871IB3eBeniC4QICy1-wQ_gx2GORmUPc5R74_Ynb20n0-NRpuFVzvGsMwap0htvtHlJxruItQ_4b_aMwY_R-nDGrtGlljbCx7d5hXb3X3ebb8X28eH75m5bSNbwVFBZM82o7hvSqq5rle5uaR6cctK0NWWy0ZUuOW37piYd7ypK2q7TQDitS1peoU-L7Bj88wQxiYOfgsuOgtUtYy2tOMusdmGp4GMMoMUYct4wC0rEqUJxEP9UKE4ViqXC_LtZfiGneDEQRFQGnILeBFBJ9N78h8of7NCx-w</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Pérez-Estay, N.</creator><creator>Molina-Piernas, E.</creator><creator>Roquer, T.</creator><creator>Aravena, D.</creator><creator>Araya Vargas, J.</creator><creator>Morata, D.</creator><creator>Arancibia, G.</creator><creator>Valdenegro, P.</creator><creator>García, K.</creator><creator>Elizalde, D.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9966-168X</orcidid></search><sort><creationdate>202209</creationdate><title>Shallow anatomy of hydrothermal systems controlled by the Liquiñe-Ofqui Fault System and the Andean Transverse Faults: Geophysical imaging of fluid pathways and practical implications for geothermal exploration</title><author>Pérez-Estay, N. ; Molina-Piernas, E. ; Roquer, T. ; Aravena, D. ; Araya Vargas, J. ; Morata, D. ; Arancibia, G. ; Valdenegro, P. ; García, K. ; Elizalde, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-1a62f21fd809cbb9cfb41b9c717089612a8f5f3719d860b7b5109bbfe0716313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Andean transverse faults</topic><topic>Archie's law</topic><topic>Bedrock</topic><topic>Domains</topic><topic>Electrical raceways</topic><topic>Electrical resistivity</topic><topic>Electrical resistivity tomography</topic><topic>Geoelectricity</topic><topic>Geothermal power</topic><topic>Geothermal resources</topic><topic>Hydrothermal systems</topic><topic>Liquiñe-ofqui fault system</topic><topic>Sediments</topic><topic>Shallow hydrothermal systems</topic><topic>Southern andes</topic><topic>Thermal water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Estay, N.</creatorcontrib><creatorcontrib>Molina-Piernas, E.</creatorcontrib><creatorcontrib>Roquer, T.</creatorcontrib><creatorcontrib>Aravena, D.</creatorcontrib><creatorcontrib>Araya Vargas, J.</creatorcontrib><creatorcontrib>Morata, D.</creatorcontrib><creatorcontrib>Arancibia, G.</creatorcontrib><creatorcontrib>Valdenegro, P.</creatorcontrib><creatorcontrib>García, K.</creatorcontrib><creatorcontrib>Elizalde, D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Geothermics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Estay, N.</au><au>Molina-Piernas, E.</au><au>Roquer, T.</au><au>Aravena, D.</au><au>Araya Vargas, J.</au><au>Morata, D.</au><au>Arancibia, G.</au><au>Valdenegro, P.</au><au>García, K.</au><au>Elizalde, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shallow anatomy of hydrothermal systems controlled by the Liquiñe-Ofqui Fault System and the Andean Transverse Faults: Geophysical imaging of fluid pathways and practical implications for geothermal exploration</atitle><jtitle>Geothermics</jtitle><date>2022-09</date><risdate>2022</risdate><volume>104</volume><spage>102435</spage><pages>102435-</pages><artnum>102435</artnum><issn>0375-6505</issn><eissn>1879-3576</eissn><abstract>•We combined ERT, nakamura's method, and geological mapping to localize thermal water.•Hotspring's thermal water is fed by vertical conduits aligned with local faults.•Significant amount of hot water is dispersed in horizontal bodies within sediments.•The hydrothermal systems are twice longer within sediments than the hotspring area.•We present a model of the shallow anatomy of fault-controlled hydrothermal systems. We combined geoelectric and seismic ambient noise methods to image the shallow depth (&lt;30 m) distribution of thermal waters in two fault-controlled hydrothermal systems located in southern Chile. The bedrock depth was constrained with seismics, while hotsprings and mapped faults were imaged by low-electrical-resistivity domains (&lt;160 Ωm) defined with electrical resistivity tomographies (ERT). The distribution and shape of low-resistivity-domains suggest that thermal fluids follow complex pathways, including deep vertical conduits hosted in fractured rock and shallow horizontal bodies hosted in sediments. These results indicate that the studied hydrothermal systems are at least twice longer within the sediments than the superficial area covered by hotsprings. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geothermics.2022.102435</doi><orcidid>https://orcid.org/0000-0002-9966-168X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0375-6505
ispartof Geothermics, 2022-09, Vol.104, p.102435, Article 102435
issn 0375-6505
1879-3576
language eng
recordid cdi_proquest_journals_2692291572
source Access via ScienceDirect (Elsevier)
subjects Andean transverse faults
Archie's law
Bedrock
Domains
Electrical raceways
Electrical resistivity
Electrical resistivity tomography
Geoelectricity
Geothermal power
Geothermal resources
Hydrothermal systems
Liquiñe-ofqui fault system
Sediments
Shallow hydrothermal systems
Southern andes
Thermal water
title Shallow anatomy of hydrothermal systems controlled by the Liquiñe-Ofqui Fault System and the Andean Transverse Faults: Geophysical imaging of fluid pathways and practical implications for geothermal exploration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A05%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shallow%20anatomy%20of%20hydrothermal%20systems%20controlled%20by%20the%20Liqui%C3%B1e-Ofqui%20Fault%20System%20and%20the%20Andean%20Transverse%20Faults:%20Geophysical%20imaging%20of%20fluid%20pathways%20and%20practical%20implications%20for%20geothermal%20exploration&rft.jtitle=Geothermics&rft.au=P%C3%A9rez-Estay,%20N.&rft.date=2022-09&rft.volume=104&rft.spage=102435&rft.pages=102435-&rft.artnum=102435&rft.issn=0375-6505&rft.eissn=1879-3576&rft_id=info:doi/10.1016/j.geothermics.2022.102435&rft_dat=%3Cproquest_cross%3E2692291572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692291572&rft_id=info:pmid/&rft_els_id=S0375650522000864&rfr_iscdi=true